|
import os |
|
import sys |
|
from pathlib import Path |
|
|
|
import fire |
|
import torch |
|
import transformers |
|
import yaml |
|
from attrdict import AttrDict |
|
from datasets import load_dataset, IterableDataset |
|
from peft import ( |
|
LoraConfig, |
|
get_peft_model, |
|
prepare_model_for_int8_training, |
|
) |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) |
|
src_dir = os.path.join(project_root, 'src') |
|
sys.path.insert(0, src_dir) |
|
|
|
from axolotl.datasets import TokenizedPromptDataset |
|
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy, ShareGPTPromptTokenizingStrategy, \ |
|
LLAMA_DEFAULT_PAD_TOKEN, GPTeacherPromptTokenizingStrategy |
|
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter |
|
|
|
def setup_wandb_env_vars(cfg): |
|
if len(cfg.wandb_project) > 0: |
|
os.environ["WANDB_PROJECT"] = cfg.wandb_project |
|
cfg.use_wandb = True |
|
if len(cfg.wandb_watch) > 0: |
|
os.environ["WANDB_WATCH"] = cfg.wandb_watch |
|
if len(cfg.wandb_log_model) > 0: |
|
os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model |
|
|
|
|
|
def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"): |
|
if adapter != "lora": |
|
raise NotImplementedError(f"{adapter} peft adapter not available") |
|
try: |
|
model = getattr(transformers, model_type).from_pretrained( |
|
base_model, |
|
load_in_8bit=cfg.load_in_8bit, |
|
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32, |
|
device_map=cfg.device_map, |
|
) |
|
except: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
load_in_8bit=cfg.load_in_8bit, |
|
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32, |
|
device_map=cfg.device_map, |
|
) |
|
|
|
try: |
|
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model) |
|
except: |
|
tokenizer = AutoTokenizer.from_pretrained(base_model) |
|
|
|
if tokenizer.__class__.__name__ == "LlamaTokenizer": |
|
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN |
|
|
|
if cfg.load_in_8bit: |
|
model = prepare_model_for_int8_training(model) |
|
|
|
lora_config = LoraConfig( |
|
r=cfg.lora_r, |
|
lora_alpha=cfg.lora_alpha, |
|
target_modules=cfg.lora_target_modules, |
|
lora_dropout=cfg.lora_dropout, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
model = get_peft_model(model, lora_config) |
|
if cfg.ddp: |
|
model.to(f"cuda:{cfg.local_rank}") |
|
|
|
|
|
|
|
model.print_trainable_parameters() |
|
return model, tokenizer |
|
|
|
|
|
def train( |
|
config: Path = Path('configs/pythia_1_2B_alpaca.yml'), |
|
**kwargs, |
|
): |
|
|
|
with open(config, 'r') as f: |
|
cfg: AttrDict = AttrDict(yaml.load(f)) |
|
|
|
|
|
for k, v in enumerate(kwargs): |
|
if k in cfg: |
|
cfg.k = v |
|
|
|
|
|
cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size |
|
cfg.device_map = "auto" |
|
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1)) |
|
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0)) |
|
cfg.ddp = cfg.world_size != 1 |
|
if cfg.ddp: |
|
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))} |
|
cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps // cfg.world_size |
|
setup_wandb_env_vars(cfg) |
|
|
|
|
|
model, tokenizer = load_model(cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter) |
|
datasets = [] |
|
for d in cfg.datasets: |
|
ds: IterableDataset = load_dataset("json", data_files=d.path, streaming=True, num_proc=4, split=None) |
|
if d.type == "alpaca": |
|
ds_strategy = AlpacaPromptTokenizingStrategy(AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len) |
|
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) |
|
datasets.append(ds_wrapper) |
|
elif d.type == "gpteacher": |
|
ds_strategy = GPTeacherPromptTokenizingStrategy(GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len) |
|
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) |
|
datasets.append(ds_wrapper) |
|
elif d.type == "sharegpt": |
|
ds_strategy = ShareGPTPromptTokenizingStrategy(ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len) |
|
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) |
|
datasets.append(ds_wrapper) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(train) |
|
|