qwerrwe / scripts /finetune.py
winglian's picture
WIP for axolotl trainer
ce24f5e
raw
history blame
4.81 kB
import os
import sys
from pathlib import Path
import fire
import torch
import transformers
import yaml
from attrdict import AttrDict
from datasets import load_dataset, IterableDataset
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_int8_training,
)
from transformers import AutoModelForCausalLM, AutoTokenizer
# add src to the pythonpath so we don't need to pip install this
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
src_dir = os.path.join(project_root, 'src')
sys.path.insert(0, src_dir)
from axolotl.datasets import TokenizedPromptDataset
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy, ShareGPTPromptTokenizingStrategy, \
LLAMA_DEFAULT_PAD_TOKEN, GPTeacherPromptTokenizingStrategy
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter
def setup_wandb_env_vars(cfg):
if len(cfg.wandb_project) > 0:
os.environ["WANDB_PROJECT"] = cfg.wandb_project
cfg.use_wandb = True
if len(cfg.wandb_watch) > 0:
os.environ["WANDB_WATCH"] = cfg.wandb_watch
if len(cfg.wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model
def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"):
if adapter != "lora":
raise NotImplementedError(f"{adapter} peft adapter not available")
try:
model = getattr(transformers, model_type).from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit,
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
device_map=cfg.device_map,
)
except:
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit,
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
device_map=cfg.device_map,
)
try:
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model)
except:
tokenizer = AutoTokenizer.from_pretrained(base_model)
if tokenizer.__class__.__name__ == "LlamaTokenizer":
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
if cfg.load_in_8bit:
model = prepare_model_for_int8_training(model)
lora_config = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
target_modules=cfg.lora_target_modules,
lora_dropout=cfg.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
if cfg.ddp:
model.to(f"cuda:{cfg.local_rank}")
# TODO resume_from_checkpoint handling
model.print_trainable_parameters()
return model, tokenizer
def train(
config: Path = Path('configs/pythia_1_2B_alpaca.yml'),
**kwargs,
):
# load the config from the yaml file
with open(config, 'r') as f:
cfg: AttrDict = AttrDict(yaml.load(f))
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
# then overwrite the value
for k, v in enumerate(kwargs):
if k in cfg:
cfg.k = v
# setup some derived config / hyperparams
cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size
cfg.device_map = "auto"
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
cfg.ddp = cfg.world_size != 1
if cfg.ddp:
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps // cfg.world_size
setup_wandb_env_vars(cfg)
# Load the model and tokenizer
model, tokenizer = load_model(cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter)
datasets = []
for d in cfg.datasets:
ds: IterableDataset = load_dataset("json", data_files=d.path, streaming=True, num_proc=4, split=None)
if d.type == "alpaca":
ds_strategy = AlpacaPromptTokenizingStrategy(AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d.type == "gpteacher":
ds_strategy = GPTeacherPromptTokenizingStrategy(GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d.type == "sharegpt":
ds_strategy = ShareGPTPromptTokenizingStrategy(ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
if __name__ == "__main__":
fire.Fire(train)