Spaces:
Running
Running
#!/usr/bin/env python | |
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from pathlib import Path | |
import torch | |
from ...utils import is_mlu_available, is_npu_available, is_xpu_available | |
from .config_args import ClusterConfig, default_json_config_file | |
from .config_utils import SubcommandHelpFormatter | |
description = "Create a default config file for Accelerate with only a few flags set." | |
def write_basic_config(mixed_precision="no", save_location: str = default_json_config_file, use_xpu: bool = False): | |
""" | |
Creates and saves a basic cluster config to be used on a local machine with potentially multiple GPUs. Will also | |
set CPU if it is a CPU-only machine. | |
Args: | |
mixed_precision (`str`, *optional*, defaults to "no"): | |
Mixed Precision to use. Should be one of "no", "fp16", or "bf16" | |
save_location (`str`, *optional*, defaults to `default_json_config_file`): | |
Optional custom save location. Should be passed to `--config_file` when using `accelerate launch`. Default | |
location is inside the huggingface cache folder (`~/.cache/huggingface`) but can be overriden by setting | |
the `HF_HOME` environmental variable, followed by `accelerate/default_config.yaml`. | |
use_xpu (`bool`, *optional*, defaults to `False`): | |
Whether to use XPU if available. | |
""" | |
path = Path(save_location) | |
path.parent.mkdir(parents=True, exist_ok=True) | |
if path.exists(): | |
print( | |
f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." | |
) | |
return False | |
mixed_precision = mixed_precision.lower() | |
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: | |
raise ValueError( | |
f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" | |
) | |
config = { | |
"compute_environment": "LOCAL_MACHINE", | |
"mixed_precision": mixed_precision, | |
} | |
if is_mlu_available(): | |
num_mlus = torch.mlu.device_count() | |
config["num_processes"] = num_mlus | |
config["use_cpu"] = False | |
if num_mlus > 1: | |
config["distributed_type"] = "MULTI_MLU" | |
else: | |
config["distributed_type"] = "NO" | |
elif torch.cuda.is_available(): | |
num_gpus = torch.cuda.device_count() | |
config["num_processes"] = num_gpus | |
config["use_cpu"] = False | |
if num_gpus > 1: | |
config["distributed_type"] = "MULTI_GPU" | |
else: | |
config["distributed_type"] = "NO" | |
elif is_xpu_available() and use_xpu: | |
num_xpus = torch.xpu.device_count() | |
config["num_processes"] = num_xpus | |
config["use_cpu"] = False | |
if num_xpus > 1: | |
config["distributed_type"] = "MULTI_XPU" | |
else: | |
config["distributed_type"] = "NO" | |
elif is_npu_available(): | |
num_npus = torch.npu.device_count() | |
config["num_processes"] = num_npus | |
config["use_cpu"] = False | |
if num_npus > 1: | |
config["distributed_type"] = "MULTI_NPU" | |
else: | |
config["distributed_type"] = "NO" | |
else: | |
num_xpus = 0 | |
config["use_cpu"] = True | |
config["num_processes"] = 1 | |
config["distributed_type"] = "NO" | |
config["debug"] = False | |
config = ClusterConfig(**config) | |
config.to_json_file(path) | |
return path | |
def default_command_parser(parser, parents): | |
parser = parser.add_parser("default", parents=parents, help=description, formatter_class=SubcommandHelpFormatter) | |
parser.add_argument( | |
"--config_file", | |
default=default_json_config_file, | |
help=( | |
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache " | |
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " | |
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " | |
"with 'huggingface'." | |
), | |
dest="save_location", | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
choices=["no", "fp16", "bf16"], | |
type=str, | |
help="Whether or not to use mixed precision training. " | |
"Choose between FP16 and BF16 (bfloat16) training. " | |
"BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.", | |
default="no", | |
) | |
parser.set_defaults(func=default_config_command) | |
return parser | |
def default_config_command(args): | |
config_file = write_basic_config(args.mixed_precision, args.save_location) | |
if config_file: | |
print(f"accelerate configuration saved at {config_file}") | |