Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# @nolint | |
# not linting this file because it imports * from swigfaiss, which | |
# causes a ton of useless warnings. | |
import numpy as np | |
from faiss.loader import * | |
import faiss | |
import collections.abc | |
########################################### | |
# Wrapper for a few functions | |
########################################### | |
def kmin(array, k): | |
"""return k smallest values (and their indices) of the lines of a | |
float32 array""" | |
array = np.ascontiguousarray(array, dtype='float32') | |
m, n = array.shape | |
I = np.zeros((m, k), dtype='int64') | |
D = np.zeros((m, k), dtype='float32') | |
ha = faiss.float_maxheap_array_t() | |
ha.ids = swig_ptr(I) | |
ha.val = swig_ptr(D) | |
ha.nh = m | |
ha.k = k | |
ha.heapify() | |
ha.addn(n, swig_ptr(array)) | |
ha.reorder() | |
return D, I | |
def kmax(array, k): | |
"""return k largest values (and their indices) of the lines of a | |
float32 array""" | |
array = np.ascontiguousarray(array, dtype='float32') | |
m, n = array.shape | |
I = np.zeros((m, k), dtype='int64') | |
D = np.zeros((m, k), dtype='float32') | |
ha = faiss.float_minheap_array_t() | |
ha.ids = swig_ptr(I) | |
ha.val = swig_ptr(D) | |
ha.nh = m | |
ha.k = k | |
ha.heapify() | |
ha.addn(n, swig_ptr(array)) | |
ha.reorder() | |
return D, I | |
def pairwise_distances(xq, xb, metric=METRIC_L2, metric_arg=0): | |
"""compute the whole pairwise distance matrix between two sets of | |
vectors""" | |
xq = np.ascontiguousarray(xq, dtype='float32') | |
xb = np.ascontiguousarray(xb, dtype='float32') | |
nq, d = xq.shape | |
nb, d2 = xb.shape | |
assert d == d2 | |
dis = np.empty((nq, nb), dtype='float32') | |
if metric == METRIC_L2: | |
pairwise_L2sqr( | |
d, nq, swig_ptr(xq), | |
nb, swig_ptr(xb), | |
swig_ptr(dis)) | |
elif metric == METRIC_INNER_PRODUCT: | |
dis[:] = xq @ xb.T | |
else: | |
pairwise_extra_distances( | |
d, nq, swig_ptr(xq), | |
nb, swig_ptr(xb), | |
metric, metric_arg, | |
swig_ptr(dis)) | |
return dis | |
def rand(n, seed=12345): | |
res = np.empty(n, dtype='float32') | |
float_rand(swig_ptr(res), res.size, seed) | |
return res | |
def randint(n, seed=12345, vmax=None): | |
res = np.empty(n, dtype='int64') | |
if vmax is None: | |
int64_rand(swig_ptr(res), res.size, seed) | |
else: | |
int64_rand_max(swig_ptr(res), res.size, vmax, seed) | |
return res | |
lrand = randint | |
def randn(n, seed=12345): | |
res = np.empty(n, dtype='float32') | |
float_randn(swig_ptr(res), res.size, seed) | |
return res | |
def checksum(a): | |
""" compute a checksum for quick-and-dirty comparisons of arrays """ | |
a = a.view('uint8') | |
if a.ndim == 1: | |
return bvec_checksum(a.size, swig_ptr(a)) | |
n, d = a.shape | |
cs = np.zeros(n, dtype='uint64') | |
bvecs_checksum(n, d, swig_ptr(a), swig_ptr(cs)) | |
return cs | |
rand_smooth_vectors_c = rand_smooth_vectors | |
def rand_smooth_vectors(n, d, seed=1234): | |
res = np.empty((n, d), dtype='float32') | |
rand_smooth_vectors_c(n, d, swig_ptr(res), seed) | |
return res | |
def eval_intersection(I1, I2): | |
""" size of intersection between each line of two result tables""" | |
I1 = np.ascontiguousarray(I1, dtype='int64') | |
I2 = np.ascontiguousarray(I2, dtype='int64') | |
n = I1.shape[0] | |
assert I2.shape[0] == n | |
k1, k2 = I1.shape[1], I2.shape[1] | |
ninter = 0 | |
for i in range(n): | |
ninter += ranklist_intersection_size( | |
k1, swig_ptr(I1[i]), k2, swig_ptr(I2[i])) | |
return ninter | |
def normalize_L2(x): | |
fvec_renorm_L2(x.shape[1], x.shape[0], swig_ptr(x)) | |
bucket_sort_c = bucket_sort | |
def bucket_sort(tab, nbucket=None, nt=0): | |
"""Perform a bucket sort on a table of integers. | |
Parameters | |
---------- | |
tab : array_like | |
elements to sort, max value nbucket - 1 | |
nbucket : integer | |
number of buckets, None if unknown | |
nt : integer | |
number of threads to use (0 = use unthreaded codepath) | |
Returns | |
------- | |
lims : array_like | |
cumulative sum of bucket sizes (size vmax + 1) | |
perm : array_like | |
perm[lims[i] : lims[i + 1]] contains the indices of bucket #i (size tab.size) | |
""" | |
tab = np.ascontiguousarray(tab, dtype="int64") | |
if nbucket is None: | |
nbucket = int(tab.max() + 1) | |
lims = np.empty(nbucket + 1, dtype='int64') | |
perm = np.empty(tab.size, dtype='int64') | |
bucket_sort_c( | |
tab.size, faiss.swig_ptr(tab.view('uint64')), | |
nbucket, faiss.swig_ptr(lims), faiss.swig_ptr(perm), | |
nt | |
) | |
return lims, perm | |
matrix_bucket_sort_inplace_c = matrix_bucket_sort_inplace | |
def matrix_bucket_sort_inplace(tab, nbucket=None, nt=0): | |
"""Perform a bucket sort on a matrix, recording the original | |
row of each element. | |
Parameters | |
---------- | |
tab : array_like | |
array of size (N, ncol) that contains the bucket ids, maximum | |
value nbucket - 1. | |
On output, it the elements are shuffled such that the flat array | |
tab.ravel()[lims[i] : lims[i + 1]] contains the row numbers | |
of each bucket entry. | |
nbucket : integer | |
number of buckets (the maximum value in tab should be nbucket - 1) | |
nt : integer | |
number of threads to use (0 = use unthreaded codepath) | |
Returns | |
------- | |
lims : array_like | |
cumulative sum of bucket sizes (size vmax + 1) | |
""" | |
assert tab.dtype == 'int32' or tab.dtype == 'int64' | |
nrow, ncol = tab.shape | |
if nbucket is None: | |
nbucket = int(tab.max() + 1) | |
lims = np.empty(nbucket + 1, dtype='int64') | |
matrix_bucket_sort_inplace_c( | |
nrow, ncol, faiss.swig_ptr(tab), | |
nbucket, faiss.swig_ptr(lims), | |
nt | |
) | |
return lims | |
########################################### | |
# ResultHeap | |
########################################### | |
class ResultHeap: | |
"""Accumulate query results from a sliced dataset. The final result will | |
be in self.D, self.I.""" | |
def __init__(self, nq, k, keep_max=False): | |
""" | |
nq: number of query vectors, | |
k: number of results per query | |
keep_max: keep the top-k maximum values instead of the minima | |
""" | |
self.I = np.zeros((nq, k), dtype='int64') | |
self.D = np.zeros((nq, k), dtype='float32') | |
self.nq, self.k = nq, k | |
if keep_max: | |
heaps = float_minheap_array_t() | |
else: | |
heaps = float_maxheap_array_t() | |
heaps.k = k | |
heaps.nh = nq | |
heaps.val = swig_ptr(self.D) | |
heaps.ids = swig_ptr(self.I) | |
heaps.heapify() | |
self.heaps = heaps | |
def add_result(self, D, I): | |
""" | |
Add results for all heaps | |
D, I should be of size (nh, nres) | |
D, I do not need to be in a particular order (heap or sorted) | |
""" | |
nq, kd = D.shape | |
D = np.ascontiguousarray(D, dtype='float32') | |
I = np.ascontiguousarray(I, dtype='int64') | |
assert I.shape == (nq, kd) | |
assert nq == self.nq | |
self.heaps.addn_with_ids( | |
kd, swig_ptr(D), | |
swig_ptr(I), kd) | |
def add_result_subset(self, subset, D, I): | |
""" | |
Add results for a subset of heaps. | |
D, I should hold resutls for all the subset | |
as a special case, if I is 1D, then all ids are assumed to be the same | |
""" | |
nsubset, kd = D.shape | |
assert nsubset == len(subset) | |
assert ( | |
I.ndim == 2 and D.shape == I.shape or | |
I.ndim == 1 and I.shape == (kd, ) | |
) | |
D = np.ascontiguousarray(D, dtype='float32') | |
I = np.ascontiguousarray(I, dtype='int64') | |
subset = np.ascontiguousarray(subset, dtype='int64') | |
id_stride = 0 if I.ndim == 1 else kd | |
self.heaps.addn_query_subset_with_ids( | |
nsubset, swig_ptr(subset), | |
kd, swig_ptr(D), swig_ptr(I), id_stride | |
) | |
def finalize(self): | |
self.heaps.reorder() | |
def merge_knn_results(Dall, Iall, keep_max=False): | |
""" | |
Merge a set of sorted knn-results obtained from different shards in a dataset | |
Dall and Iall are of size (nshard, nq, k) each D[i, j] should be sorted | |
returns D, I of size (nq, k) as the merged result set | |
""" | |
assert Iall.shape == Dall.shape | |
nshard, n, k = Dall.shape | |
Dnew = np.empty((n, k), dtype=Dall.dtype) | |
Inew = np.empty((n, k), dtype=Iall.dtype) | |
func = merge_knn_results_CMax if keep_max else merge_knn_results_CMin | |
func( | |
n, k, nshard, | |
swig_ptr(Dall), swig_ptr(Iall), | |
swig_ptr(Dnew), swig_ptr(Inew) | |
) | |
return Dnew, Inew | |
###################################################### | |
# Efficient ID to ID map | |
###################################################### | |
class MapInt64ToInt64: | |
def __init__(self, capacity): | |
self.log2_capacity = int(np.log2(capacity)) | |
assert capacity == 2 ** self.log2_capacity, "need power of 2 capacity" | |
self.capacity = capacity | |
self.tab = np.empty((capacity, 2), dtype='int64') | |
faiss.hashtable_int64_to_int64_init(self.log2_capacity, swig_ptr(self.tab)) | |
def add(self, keys, vals): | |
n, = keys.shape | |
assert vals.shape == (n,) | |
faiss.hashtable_int64_to_int64_add( | |
self.log2_capacity, swig_ptr(self.tab), | |
n, swig_ptr(keys), swig_ptr(vals)) | |
def lookup(self, keys): | |
n, = keys.shape | |
vals = np.empty((n,), dtype='int64') | |
faiss.hashtable_int64_to_int64_lookup( | |
self.log2_capacity, swig_ptr(self.tab), | |
n, swig_ptr(keys), swig_ptr(vals)) | |
return vals | |
###################################################### | |
# KNN function | |
###################################################### | |
def knn(xq, xb, k, metric=METRIC_L2): | |
""" | |
Compute the k nearest neighbors of a vector without constructing an index | |
Parameters | |
---------- | |
xq : array_like | |
Query vectors, shape (nq, d) where the dimension d is that same as xb | |
`dtype` must be float32. | |
xb : array_like | |
Database vectors, shape (nb, d) where dimension d is the same as xq | |
`dtype` must be float32. | |
k : int | |
Number of nearest neighbors. | |
distance_type : MetricType, optional | |
distance measure to use (either METRIC_L2 or METRIC_INNER_PRODUCT) | |
Returns | |
------- | |
D : array_like | |
Distances of the nearest neighbors, shape (nq, k) | |
I : array_like | |
Labels of the nearest neighbors, shape (nq, k) | |
""" | |
xq = np.ascontiguousarray(xq, dtype='float32') | |
xb = np.ascontiguousarray(xb, dtype='float32') | |
nq, d = xq.shape | |
nb, d2 = xb.shape | |
assert d == d2 | |
I = np.empty((nq, k), dtype='int64') | |
D = np.empty((nq, k), dtype='float32') | |
if metric == METRIC_L2: | |
knn_L2sqr( | |
swig_ptr(xq), swig_ptr(xb), | |
d, nq, nb, k, swig_ptr(D), swig_ptr(I) | |
) | |
elif metric == METRIC_INNER_PRODUCT: | |
knn_inner_product( | |
swig_ptr(xq), swig_ptr(xb), | |
d, nq, nb, k, swig_ptr(D), swig_ptr(I) | |
) | |
else: | |
raise NotImplementedError("only L2 and INNER_PRODUCT are supported") | |
return D, I | |
def knn_hamming(xq, xb, k, variant="hc"): | |
""" | |
Compute the k nearest neighbors of a set of vectors without constructing an index. | |
Parameters | |
---------- | |
xq : array_like | |
Query vectors, shape (nq, d) where d is the number of bits / 8 | |
`dtype` must be uint8. | |
xb : array_like | |
Database vectors, shape (nb, d) where d is the number of bits / 8 | |
`dtype` must be uint8. | |
k : int | |
Number of nearest neighbors. | |
variant : string | |
Function variant to use, either "mc" (counter) or "hc" (heap) | |
Returns | |
------- | |
D : array_like | |
Distances of the nearest neighbors, shape (nq, k) | |
I : array_like | |
Labels of the nearest neighbors, shape (nq, k) | |
""" | |
# other variant is "mc" | |
nq, d = xq.shape | |
nb, d2 = xb.shape | |
assert d == d2 | |
D = np.empty((nq, k), dtype='int32') | |
I = np.empty((nq, k), dtype='int64') | |
if variant == "hc": | |
heap = faiss.int_maxheap_array_t() | |
heap.k = k | |
heap.nh = nq | |
heap.ids = faiss.swig_ptr(I) | |
heap.val = faiss.swig_ptr(D) | |
faiss.hammings_knn_hc( | |
heap, faiss.swig_ptr(xq), faiss.swig_ptr(xb), nb, | |
d, 1 | |
) | |
elif variant == "mc": | |
faiss.hammings_knn_mc( | |
faiss.swig_ptr(xq), faiss.swig_ptr(xb), nq, nb, k, d, | |
faiss.swig_ptr(D), faiss.swig_ptr(I) | |
) | |
else: | |
raise NotImplementedError | |
return D, I | |
########################################### | |
# Kmeans object | |
########################################### | |
class Kmeans: | |
"""Object that performs k-means clustering and manages the centroids. | |
The `Kmeans` class is essentially a wrapper around the C++ `Clustering` object. | |
Parameters | |
---------- | |
d : int | |
dimension of the vectors to cluster | |
k : int | |
number of clusters | |
gpu: bool or int, optional | |
False: don't use GPU | |
True: use all GPUs | |
number: use this many GPUs | |
progressive_dim_steps: | |
use a progressive dimension clustering (with that number of steps) | |
Subsequent parameters are fields of the Clustring object. The most important are: | |
niter: int, optional | |
clustering iterations | |
nredo: int, optional | |
redo clustering this many times and keep best | |
verbose: bool, optional | |
spherical: bool, optional | |
do we want normalized centroids? | |
int_centroids: bool, optional | |
round centroids coordinates to integer | |
seed: int, optional | |
seed for the random number generator | |
""" | |
def __init__(self, d, k, **kwargs): | |
"""d: input dimension, k: nb of centroids. Additional | |
parameters are passed on the ClusteringParameters object, | |
including niter=25, verbose=False, spherical = False | |
""" | |
self.d = d | |
self.reset(k) | |
self.gpu = False | |
if "progressive_dim_steps" in kwargs: | |
self.cp = ProgressiveDimClusteringParameters() | |
else: | |
self.cp = ClusteringParameters() | |
for k, v in kwargs.items(): | |
if k == 'gpu': | |
if v == True or v == -1: | |
v = get_num_gpus() | |
self.gpu = v | |
else: | |
# if this raises an exception, it means that it is a non-existent field | |
getattr(self.cp, k) | |
setattr(self.cp, k, v) | |
self.set_index() | |
def set_index(self): | |
d = self.d | |
if self.cp.__class__ == ClusteringParameters: | |
if self.cp.spherical: | |
self.index = IndexFlatIP(d) | |
else: | |
self.index = IndexFlatL2(d) | |
if self.gpu: | |
self.index = faiss.index_cpu_to_all_gpus(self.index, ngpu=self.gpu) | |
else: | |
if self.gpu: | |
fac = GpuProgressiveDimIndexFactory(ngpu=self.gpu) | |
else: | |
fac = ProgressiveDimIndexFactory() | |
self.fac = fac | |
def reset(self, k=None): | |
""" prepare k-means object to perform a new clustering, possibly | |
with another number of centroids """ | |
if k is not None: | |
self.k = int(k) | |
self.centroids = None | |
self.obj = None | |
self.iteration_stats = None | |
def train(self, x, weights=None, init_centroids=None): | |
""" Perform k-means clustering. | |
On output of the function call: | |
- the centroids are in the centroids field of size (`k`, `d`). | |
- the objective value at each iteration is in the array obj (size `niter`) | |
- detailed optimization statistics are in the array iteration_stats. | |
Parameters | |
---------- | |
x : array_like | |
Training vectors, shape (n, d), `dtype` must be float32 and n should | |
be larger than the number of clusters `k`. | |
weights : array_like | |
weight associated to each vector, shape `n` | |
init_centroids : array_like | |
initial set of centroids, shape (n, d) | |
Returns | |
------- | |
final_obj: float | |
final optimization objective | |
""" | |
x = np.ascontiguousarray(x, dtype='float32') | |
n, d = x.shape | |
assert d == self.d | |
if self.cp.__class__ == ClusteringParameters: | |
# regular clustering | |
clus = Clustering(d, self.k, self.cp) | |
if init_centroids is not None: | |
nc, d2 = init_centroids.shape | |
assert d2 == d | |
faiss.copy_array_to_vector(init_centroids.ravel(), clus.centroids) | |
clus.train(x, self.index, weights) | |
else: | |
# not supported for progressive dim | |
assert weights is None | |
assert init_centroids is None | |
assert not self.cp.spherical | |
clus = ProgressiveDimClustering(d, self.k, self.cp) | |
clus.train(n, swig_ptr(x), self.fac) | |
centroids = faiss.vector_float_to_array(clus.centroids) | |
self.centroids = centroids.reshape(self.k, d) | |
stats = clus.iteration_stats | |
stats = [stats.at(i) for i in range(stats.size())] | |
self.obj = np.array([st.obj for st in stats]) | |
# copy all the iteration_stats objects to a python array | |
stat_fields = 'obj time time_search imbalance_factor nsplit'.split() | |
self.iteration_stats = [ | |
{field: getattr(st, field) for field in stat_fields} | |
for st in stats | |
] | |
return self.obj[-1] if self.obj.size > 0 else 0.0 | |
def assign(self, x): | |
x = np.ascontiguousarray(x, dtype='float32') | |
assert self.centroids is not None, "should train before assigning" | |
self.index.reset() | |
self.index.add(self.centroids) | |
D, I = self.index.search(x, 1) | |
return D.ravel(), I.ravel() | |
########################################### | |
# Packing and unpacking bistrings | |
########################################### | |
def is_sequence(x): | |
return isinstance(x, collections.abc.Sequence) | |
pack_bitstrings_c = pack_bitstrings | |
def pack_bitstrings(a, nbit): | |
""" | |
Pack a set integers (i, j) where i=0:n and j=0:M into | |
n bitstrings. | |
Output is an uint8 array of size (n, code_size), where code_size is | |
such that at most 7 bits per code are wasted. | |
If nbit is an integer: all entries takes nbit bits. | |
If nbit is an array: entry (i, j) takes nbit[j] bits. | |
""" | |
n, M = a.shape | |
a = np.ascontiguousarray(a, dtype='int32') | |
if is_sequence(nbit): | |
nbit = np.ascontiguousarray(nbit, dtype='int32') | |
assert nbit.shape == (M,) | |
code_size = int((nbit.sum() + 7) // 8) | |
b = np.empty((n, code_size), dtype='uint8') | |
pack_bitstrings_c( | |
n, M, swig_ptr(nbit), swig_ptr(a), swig_ptr(b), code_size) | |
else: | |
code_size = (M * nbit + 7) // 8 | |
b = np.empty((n, code_size), dtype='uint8') | |
pack_bitstrings_c(n, M, nbit, swig_ptr(a), swig_ptr(b), code_size) | |
return b | |
unpack_bitstrings_c = unpack_bitstrings | |
def unpack_bitstrings(b, M_or_nbits, nbit=None): | |
""" | |
Unpack a set integers (i, j) where i=0:n and j=0:M from | |
n bitstrings (encoded as uint8s). | |
Input is an uint8 array of size (n, code_size), where code_size is | |
such that at most 7 bits per code are wasted. | |
Two forms: | |
- when called with (array, M, nbit): there are M entries of size | |
nbit per row | |
- when called with (array, nbits): element (i, j) is encoded in | |
nbits[j] bits | |
""" | |
n, code_size = b.shape | |
if nbit is None: | |
nbit = np.ascontiguousarray(M_or_nbits, dtype='int32') | |
M = len(nbit) | |
min_code_size = int((nbit.sum() + 7) // 8) | |
assert code_size >= min_code_size | |
a = np.empty((n, M), dtype='int32') | |
unpack_bitstrings_c( | |
n, M, swig_ptr(nbit), | |
swig_ptr(b), code_size, swig_ptr(a)) | |
else: | |
M = M_or_nbits | |
min_code_size = (M * nbit + 7) // 8 | |
assert code_size >= min_code_size | |
a = np.empty((n, M), dtype='int32') | |
unpack_bitstrings_c( | |
n, M, nbit, swig_ptr(b), code_size, swig_ptr(a)) | |
return a | |