Spaces:
Sleeping
Sleeping
File size: 15,980 Bytes
6599671 af33e89 6599671 af33e89 6599671 f0184d5 6599671 4ca2b05 6599671 3a640f9 6606c0f 3a640f9 6606c0f 3a640f9 6606c0f 3a640f9 6606c0f 3a640f9 af33e89 3a640f9 6606c0f 3a640f9 6606c0f 3a640f9 6599671 af33e89 6599671 f0184d5 6599671 f0184d5 6599671 efd527a f0184d5 6599671 f0184d5 6599671 f0184d5 6599671 f0184d5 6599671 f0184d5 6599671 f0184d5 6599671 f0184d5 6599671 f0184d5 6599671 f0184d5 6599671 f0184d5 6599671 f0184d5 6599671 6606c0f 6599671 6606c0f 6599671 6606c0f 6599671 6606c0f 6599671 6606c0f af33e89 6606c0f 6599671 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import os
import gradio as gr
import nltk
import numpy as np
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # No GPU available, use CPU only
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # Suppress TensorFlow logging
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model using Keras
def build_chatbot_model(input_shape, output_shape):
model = keras.Sequential()
model.add(layers.Input(shape=(input_shape,)))
model.add(layers.Dense(8, activation='relu'))
model.add(layers.Dense(8, activation='relu'))
model.add(layers.Dense(output_shape, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# Build and train the chatbot model
chatbot_model = build_chatbot_model(len(training[0]), len(output[0]))
chatbot_model.fit(training, output, epochs=100) # Adjust epochs and model fitting parameters as necessary
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Disease Prediction Code
def load_data():
try:
df = pd.read_csv("Training.csv")
tr = pd.read_csv("Testing.csv")
except FileNotFoundError as e:
raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.") from e
# Encode diseases
disease_dict = {
'Fungal infection': 0,
'Allergy': 1,
'GERD': 2,
'Chronic cholestasis': 3,
'Drug Reaction': 4,
'Peptic ulcer disease': 5,
'AIDS': 6,
'Diabetes': 7,
'Gastroenteritis': 8,
'Bronchial Asthma': 9,
'Hypertension': 10,
'Migraine': 11,
'Cervical spondylosis': 12,
'Paralysis (brain hemorrhage)': 13,
'Jaundice': 14,
'Malaria': 15,
'Chicken pox': 16,
'Dengue': 17,
'Typhoid': 18,
'Hepatitis A': 19,
'Hepatitis B': 20,
'Hepatitis C': 21,
'Hepatitis D': 22,
'Hepatitis E': 23,
'Alcoholic hepatitis': 24,
'Tuberculosis': 25,
'Common Cold': 26,
'Pneumonia': 27,
'Dimorphic hemorrhoids (piles)': 28,
'Heart attack': 29,
'Varicose veins': 30,
'Hypothyroidism': 31,
'Hyperthyroidism': 32,
'Hypoglycemia': 33,
'Osteoarthritis': 34,
'Arthritis': 35,
'(vertigo) Paroxysmal Positional Vertigo': 36,
'Acne': 37,
'Urinary tract infection': 38,
'Psoriasis': 39,
'Impetigo': 40
}
# Replace prognosis values with numerical categories
df.replace({'prognosis': disease_dict}, inplace=True)
# Check unique values in prognosis after mapping
print("Unique values in prognosis after mapping:", df['prognosis'].unique())
# Ensure prognosis is purely numerical after mapping
if df['prognosis'].dtype == 'object':
raise ValueError(f"The prognosis contains unmapped values: {df['prognosis'].unique()}")
df['prognosis'] = df['prognosis'].astype(int)
df = df.infer_objects()
# Similar process for the testing data
tr.replace({'prognosis': disease_dict}, inplace=True)
print("Unique values in prognosis for testing data after mapping:", tr['prognosis'].unique())
if tr['prognosis'].dtype == 'object':
raise ValueError(f"Testing data prognosis contains unmapped values: {tr['prognosis'].unique()}")
tr['prognosis'] = tr['prognosis'].astype(int)
tr = tr.infer_objects()
return df, tr, disease_dict
df, tr, disease_dict = load_data()
l1 = list(df.columns[:-1]) # All columns except prognosis
X = df[l1]
y = df['prognosis']
X_test = tr[l1]
y_test = tr['prognosis']
# Encode the target variable with LabelEncoder if still in string format
le = LabelEncoder()
y_encoded = le.fit_transform(y)
def train_models(X, y_encoded, X_test, y_test):
models = {
"Decision Tree": DecisionTreeClassifier(),
"Random Forest": RandomForestClassifier(),
"Naive Bayes": GaussianNB()
}
trained_models = {}
for model_name, model_obj in models.items():
try:
model_obj.fit(X, y_encoded) # Fit the model
acc = accuracy_score(y_test, model_obj.predict(X_test))
trained_models[model_name] = (model_obj, acc)
except Exception as e:
print(f"Failed to train {model_name}: {e}")
return trained_models
trained_models = train_models(X, y_encoded, X_test, y_test)
def predict_disease(model, symptoms):
input_test = np.zeros(len(l1))
for symptom in symptoms:
if symptom in l1:
input_test[l1.index(symptom)] = 1
prediction = model.predict([input_test])[0]
confidence = model.predict_proba([input_test])[0][prediction] if hasattr(model, 'predict_proba') else None
return {
"disease": list(disease_dict.keys())[list(disease_dict.values()).index(prediction)],
"confidence": confidence
}
def disease_prediction_interface(symptoms):
symptoms_selected = [s for s in symptoms if s != "None"]
if len(symptoms_selected) < 3:
return ["Please select at least 3 symptoms for accurate prediction."]
results = []
for model_name, (model, acc) in trained_models.items():
prediction_info = predict_disease(model, symptoms_selected)
predicted_disease = prediction_info["disease"]
confidence_score = prediction_info["confidence"]
result = f"{model_name} Prediction: Predicted Disease: **{predicted_disease}**"
if confidence_score is not None:
result += f" (Confidence: {confidence_score:.2f})"
result += f" (Accuracy: {acc * 100:.2f}%)"
results.append(result)
return results
# Helper Functions (for chatbot)
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = next((random.choice(intent["responses"]) for intent in intents_data["intents"] if intent["tag"] == tag), "I'm sorry, I didn't understand that. π€")
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy π",
"anger": "Anger π ",
"sadness": "Sadness π’",
"fear": "Fear π¨",
"surprise": "Surprise π²",
"neutral": "Neutral π",
}
return emotion_map.get(emotion, "Unknown π€"), emotion
def generate_suggestions(emotion):
"""Return relevant suggestions based on detected emotions."""
emotion_key = emotion.lower()
suggestions = {
"joy": [
["Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
["Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
],
"anger": [
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"],
["Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Relaxation Video", "https://youtu.be/MIc299Flibs"],
],
"fear": [
["Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
["Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Relaxation Video", "https://youtu.be/yGKKz185M5o"],
],
"sadness": [
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Relaxation Video", "https://youtu.be/-e-4Kx5px_I"],
],
"surprise": [
["Managing Stress", "https://www.health.harvard.edu/health-a-to-z"],
["Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
],
}
formatted_suggestions = [
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
]
return formatted_suggestions
def get_health_professionals_and_map(location, query):
"""Search nearby healthcare professionals using Google Maps API."""
try:
if not location or not query:
return [], "" # Return empty list if inputs are missing
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return [], ""
except Exception as e:
print(f"Failed to fetch healthcare professionals: {e}")
return [], ""
# Main Application Logic
def app_function(user_input, location, query, symptoms, history):
chatbot_history, _ = generate_chatbot_response(user_input, history)
sentiment_result = analyze_sentiment(user_input)
emotion_result, cleaned_emotion = detect_emotion(user_input)
suggestions = generate_suggestions(cleaned_emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
disease_results = disease_prediction_interface(symptoms)
return (
chatbot_history,
sentiment_result,
emotion_result,
suggestions,
professionals,
map_html,
disease_results
)
# Disease Prediction Interface
def disease_app_function(name, symptom1, symptom2, symptom3, symptom4, symptom5):
if not name.strip():
return "Please enter the patient's name."
symptoms_selected = [s for s in [symptom1, symptom2, symptom3, symptom4, symptom5] if s != "None"]
if len(symptoms_selected) < 3:
return "Please select at least 3 symptoms for accurate prediction."
results = []
for model_name, (model, acc) in trained_models.items():
prediction = predict_disease(model, symptoms_selected)
result = f"{model_name} Prediction: Predicted Disease: **{prediction}**"
result += f" (Accuracy: {acc * 100:.2f}%)"
results.append(result)
return "\n\n".join(results)
# Gradio Interface Setup
with gr.Blocks() as app:
gr.HTML("<h1>π Well-Being Companion</h1>")
with gr.Tab("Mental Health Companion"):
with gr.Row():
user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message...")
location = gr.Textbox(label="Your Current Location Here", placeholder="Enter location...")
query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="What are you looking for...")
with gr.Row():
symptom1 = gr.Dropdown(choices=["None"] + l1, label="Symptom 1")
symptom2 = gr.Dropdown(choices=["None"] + l1, label="Symptom 2")
symptom3 = gr.Dropdown(choices=["None"] + l1, label="Symptom 3")
symptom4 = gr.Dropdown(choices=["None"] + l1, label="Symptom 4")
symptom5 = gr.Dropdown(choices=["None"] + l1, label="Symptom 5")
submit_chatbot = gr.Button(value="Submit", variant="primary")
chatbot = gr.Chatbot(label="Chat History")
sentiment = gr.Textbox(label="Detected Sentiment")
emotion = gr.Textbox(label="Detected Emotion")
suggestions = gr.DataFrame(headers=["Title", "Link"])
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])
map_html = gr.HTML(label="Interactive Map")
disease_predictions = gr.Textbox(label="Disease Predictions")
submit_chatbot.click(
app_function,
inputs=[user_input, location, query, [symptom1, symptom2, symptom3, symptom4, symptom5], chatbot],
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html, disease_predictions],
)
with gr.Tab("Disease Prediction"):
name_box = gr.Textbox(label="Name of Patient", placeholder="Enter patient's name")
symptom_choices = [gr.Dropdown(choices=["None"] + l1, label=f"Symptom {i+1}") for i in range(5)]
submit_disease = gr.Button(value="Submit", variant="primary")
disease_output = gr.Textbox(label="Predicted Disease", placeholder="Prediction will appear here")
submit_disease.click(
disease_app_function,
inputs=[name_box] + symptom_choices,
outputs=disease_output
)
# Launch the Gradio application
app.launch() |