File size: 15,980 Bytes
6599671
 
 
 
 
 
 
 
 
 
 
 
 
af33e89
 
6599671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af33e89
 
 
 
 
 
 
 
 
 
 
 
 
 
6599671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0184d5
 
6599671
4ca2b05
6599671
3a640f9
 
 
 
 
6606c0f
3a640f9
6606c0f
3a640f9
 
6606c0f
3a640f9
 
 
 
 
 
 
 
6606c0f
3a640f9
 
 
 
 
 
 
 
af33e89
3a640f9
 
 
 
 
6606c0f
3a640f9
6606c0f
3a640f9
 
 
 
6599671
 
 
 
 
af33e89
6599671
 
 
f0184d5
6599671
 
f0184d5
 
6599671
 
 
efd527a
 
f0184d5
6599671
 
f0184d5
 
6599671
 
 
 
 
 
 
 
 
 
 
 
f0184d5
6599671
f0184d5
6599671
 
 
 
 
 
 
f0184d5
 
 
 
 
 
6599671
 
f0184d5
6599671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0184d5
6599671
 
f0184d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6599671
f0184d5
6599671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0184d5
6599671
f0184d5
 
6599671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6606c0f
 
 
 
6599671
6606c0f
6599671
6606c0f
 
 
 
 
 
 
 
 
6599671
6606c0f
6599671
6606c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af33e89
6606c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6599671
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os
import gradio as gr
import nltk
import numpy as np
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder

# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"  # No GPU available, use CPU only
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"    # Suppress TensorFlow logging

# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load intents and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot model using Keras
def build_chatbot_model(input_shape, output_shape):
    model = keras.Sequential()
    model.add(layers.Input(shape=(input_shape,)))
    model.add(layers.Dense(8, activation='relu'))
    model.add(layers.Dense(8, activation='relu'))
    model.add(layers.Dense(output_shape, activation='softmax'))

    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

# Build and train the chatbot model
chatbot_model = build_chatbot_model(len(training[0]), len(output[0]))
chatbot_model.fit(training, output, epochs=100)  # Adjust epochs and model fitting parameters as necessary

# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Disease Prediction Code
def load_data():
    try:
        df = pd.read_csv("Training.csv")
        tr = pd.read_csv("Testing.csv")
    except FileNotFoundError as e:
        raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.") from e

    # Encode diseases
    disease_dict = {
        'Fungal infection': 0, 
        'Allergy': 1, 
        'GERD': 2, 
        'Chronic cholestasis': 3, 
        'Drug Reaction': 4,
        'Peptic ulcer disease': 5,
        'AIDS': 6, 
        'Diabetes': 7, 
        'Gastroenteritis': 8, 
        'Bronchial Asthma': 9,
        'Hypertension': 10, 
        'Migraine': 11, 
        'Cervical spondylosis': 12, 
        'Paralysis (brain hemorrhage)': 13,
        'Jaundice': 14, 
        'Malaria': 15, 
        'Chicken pox': 16, 
        'Dengue': 17, 
        'Typhoid': 18, 
        'Hepatitis A': 19,
        'Hepatitis B': 20, 
        'Hepatitis C': 21, 
        'Hepatitis D': 22, 
        'Hepatitis E': 23, 
        'Alcoholic hepatitis': 24,
        'Tuberculosis': 25, 
        'Common Cold': 26, 
        'Pneumonia': 27, 
        'Dimorphic hemorrhoids (piles)': 28, 
        'Heart attack': 29, 
        'Varicose veins': 30, 
        'Hypothyroidism': 31, 
        'Hyperthyroidism': 32,
        'Hypoglycemia': 33, 
        'Osteoarthritis': 34, 
        'Arthritis': 35,
        '(vertigo) Paroxysmal Positional Vertigo': 36, 
        'Acne': 37, 
        'Urinary tract infection': 38,
        'Psoriasis': 39, 
        'Impetigo': 40
    }

    # Replace prognosis values with numerical categories
    df.replace({'prognosis': disease_dict}, inplace=True)

    # Check unique values in prognosis after mapping
    print("Unique values in prognosis after mapping:", df['prognosis'].unique())

    # Ensure prognosis is purely numerical after mapping
    if df['prognosis'].dtype == 'object':
        raise ValueError(f"The prognosis contains unmapped values: {df['prognosis'].unique()}")

    df['prognosis'] = df['prognosis'].astype(int)
    df = df.infer_objects()

    # Similar process for the testing data
    tr.replace({'prognosis': disease_dict}, inplace=True)
    print("Unique values in prognosis for testing data after mapping:", tr['prognosis'].unique())
    
    if tr['prognosis'].dtype == 'object':
        raise ValueError(f"Testing data prognosis contains unmapped values: {tr['prognosis'].unique()}")

    tr['prognosis'] = tr['prognosis'].astype(int)
    tr = tr.infer_objects()

    return df, tr, disease_dict

df, tr, disease_dict = load_data()
l1 = list(df.columns[:-1])  # All columns except prognosis
X = df[l1]
y = df['prognosis']
X_test = tr[l1]
y_test = tr['prognosis']

# Encode the target variable with LabelEncoder if still in string format
le = LabelEncoder()
y_encoded = le.fit_transform(y)

def train_models(X, y_encoded, X_test, y_test):
    models = {
        "Decision Tree": DecisionTreeClassifier(),
        "Random Forest": RandomForestClassifier(),
        "Naive Bayes": GaussianNB()
    }
    trained_models = {}
    for model_name, model_obj in models.items():
        try:
            model_obj.fit(X, y_encoded)  # Fit the model
            acc = accuracy_score(y_test, model_obj.predict(X_test))
            trained_models[model_name] = (model_obj, acc)
        except Exception as e:
            print(f"Failed to train {model_name}: {e}")
    return trained_models

trained_models = train_models(X, y_encoded, X_test, y_test)

def predict_disease(model, symptoms):
    input_test = np.zeros(len(l1))
    for symptom in symptoms:
        if symptom in l1:
            input_test[l1.index(symptom)] = 1
    prediction = model.predict([input_test])[0]
    confidence = model.predict_proba([input_test])[0][prediction] if hasattr(model, 'predict_proba') else None
    return {
        "disease": list(disease_dict.keys())[list(disease_dict.values()).index(prediction)],
        "confidence": confidence
    }

def disease_prediction_interface(symptoms):
    symptoms_selected = [s for s in symptoms if s != "None"]
    
    if len(symptoms_selected) < 3:
        return ["Please select at least 3 symptoms for accurate prediction."]
    
    results = []
    for model_name, (model, acc) in trained_models.items():
        prediction_info = predict_disease(model, symptoms_selected)
        predicted_disease = prediction_info["disease"]
        confidence_score = prediction_info["confidence"]
        
        result = f"{model_name} Prediction: Predicted Disease: **{predicted_disease}**"
        if confidence_score is not None:
            result += f" (Confidence: {confidence_score:.2f})"
        result += f" (Accuracy: {acc * 100:.2f}%)"
        
        results.append(result)

    return results

# Helper Functions (for chatbot)
def bag_of_words(s, words):
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def generate_chatbot_response(message, history):
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = next((random.choice(intent["responses"]) for intent in intents_data["intents"] if intent["tag"] == tag), "I'm sorry, I didn't understand that. πŸ€”")
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return f"Sentiment: {sentiment_map[sentiment_class]}"

def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"].lower().strip()
    emotion_map = {
        "joy": "Joy 😊",
        "anger": "Anger 😠",
        "sadness": "Sadness 😒",
        "fear": "Fear 😨",
        "surprise": "Surprise 😲",
        "neutral": "Neutral 😐",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”"), emotion

def generate_suggestions(emotion):
    """Return relevant suggestions based on detected emotions."""
    emotion_key = emotion.lower()
    suggestions = {
        "joy": [
            ["Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
            ["Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
        ],
        "anger": [
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"],
            ["Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Relaxation Video", "https://youtu.be/MIc299Flibs"],
        ],
        "fear": [
            ["Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
            ["Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Relaxation Video", "https://youtu.be/yGKKz185M5o"],
        ],
        "sadness": [
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Relaxation Video", "https://youtu.be/-e-4Kx5px_I"],
        ],
        "surprise": [
            ["Managing Stress", "https://www.health.harvard.edu/health-a-to-z"],
            ["Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
        ],
    }

    formatted_suggestions = [
        [title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
    ]
    return formatted_suggestions

def get_health_professionals_and_map(location, query):
    """Search nearby healthcare professionals using Google Maps API."""
    try:
        if not location or not query:
            return [], ""  # Return empty list if inputs are missing

        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                professionals.append([place['name'], place.get('vicinity', 'No address provided')])
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()
        return [], ""
    except Exception as e:
        print(f"Failed to fetch healthcare professionals: {e}")
        return [], ""

# Main Application Logic
def app_function(user_input, location, query, symptoms, history):
    chatbot_history, _ = generate_chatbot_response(user_input, history)
    sentiment_result = analyze_sentiment(user_input)
    emotion_result, cleaned_emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(cleaned_emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    disease_results = disease_prediction_interface(symptoms)
    
    return (
        chatbot_history, 
        sentiment_result, 
        emotion_result, 
        suggestions, 
        professionals, 
        map_html,
        disease_results
    )

# Disease Prediction Interface
def disease_app_function(name, symptom1, symptom2, symptom3, symptom4, symptom5):
    if not name.strip():
        return "Please enter the patient's name."
    
    symptoms_selected = [s for s in [symptom1, symptom2, symptom3, symptom4, symptom5] if s != "None"]
    
    if len(symptoms_selected) < 3:
        return "Please select at least 3 symptoms for accurate prediction."

    results = []
    for model_name, (model, acc) in trained_models.items():
        prediction = predict_disease(model, symptoms_selected)
        result = f"{model_name} Prediction: Predicted Disease: **{prediction}**"
        result += f" (Accuracy: {acc * 100:.2f}%)"
        results.append(result)
    
    return "\n\n".join(results)

# Gradio Interface Setup
with gr.Blocks() as app:
    gr.HTML("<h1>🌟 Well-Being Companion</h1>")
    
    with gr.Tab("Mental Health Companion"):
        with gr.Row():
            user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message...")
            location = gr.Textbox(label="Your Current Location Here", placeholder="Enter location...")
            query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="What are you looking for...")
            
        with gr.Row():
            symptom1 = gr.Dropdown(choices=["None"] + l1, label="Symptom 1")
            symptom2 = gr.Dropdown(choices=["None"] + l1, label="Symptom 2")
            symptom3 = gr.Dropdown(choices=["None"] + l1, label="Symptom 3")
            symptom4 = gr.Dropdown(choices=["None"] + l1, label="Symptom 4")
            symptom5 = gr.Dropdown(choices=["None"] + l1, label="Symptom 5")

        submit_chatbot = gr.Button(value="Submit", variant="primary")
        chatbot = gr.Chatbot(label="Chat History")
        sentiment = gr.Textbox(label="Detected Sentiment")
        emotion = gr.Textbox(label="Detected Emotion")
        
        suggestions = gr.DataFrame(headers=["Title", "Link"])  
        professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])  
        map_html = gr.HTML(label="Interactive Map")
        disease_predictions = gr.Textbox(label="Disease Predictions")  

        submit_chatbot.click(
            app_function,
            inputs=[user_input, location, query, [symptom1, symptom2, symptom3, symptom4, symptom5], chatbot],
            outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html, disease_predictions],
        )

    with gr.Tab("Disease Prediction"):
        name_box = gr.Textbox(label="Name of Patient", placeholder="Enter patient's name")
        symptom_choices = [gr.Dropdown(choices=["None"] + l1, label=f"Symptom {i+1}") for i in range(5)]
        submit_disease = gr.Button(value="Submit", variant="primary")

        disease_output = gr.Textbox(label="Predicted Disease", placeholder="Prediction will appear here")

        submit_disease.click(
            disease_app_function,
            inputs=[name_box] + symptom_choices,
            outputs=disease_output
        )

# Launch the Gradio application
app.launch()