Spaces:
Sleeping
Sleeping
File size: 10,590 Bytes
1aa6549 334ba26 dacc7c0 4525308 ef41952 4525308 334ba26 19503c4 4525308 23325a3 19503c4 fa97be4 dacc7c0 334ba26 dacc7c0 19503c4 334ba26 dacc7c0 19503c4 334ba26 dacc7c0 19503c4 0e313c1 9164577 dacc7c0 4525308 0e313c1 334ba26 dacc7c0 334ba26 ebca5ff 19503c4 dacc7c0 19503c4 dacc7c0 19503c4 674b44a 19503c4 dacc7c0 19503c4 4525308 19503c4 4525308 dacc7c0 4525308 dacc7c0 19503c4 4525308 23325a3 19503c4 23325a3 19503c4 4525308 19503c4 4525308 19503c4 23325a3 19503c4 23325a3 4525308 19503c4 23325a3 19503c4 4525308 19503c4 4525308 0e313c1 dacc7c0 0e313c1 dacc7c0 19503c4 0bf96c0 456391b 19503c4 0bf96c0 456391b 19503c4 0bf96c0 456391b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import requests
import pandas as pd
import os
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# --- Constants ---
GOOGLE_MAPS_API_KEY = os.environ.get("GOOGLE_MAPS_API_KEY") # Get API key from environment variable
if not GOOGLE_MAPS_API_KEY:
raise ValueError("Error: GOOGLE_MAPS_API_KEY environment variable not set.")
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
# --- Chatbot Logic ---
stemmer = LancasterStemmer()
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found.")
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found.")
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chat(message, history):
history = history or []
message = message.lower()
try:
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# --- Sentiment Analysis ---
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(text):
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
return f"**Predicted Sentiment:** {sentiment}"
except Exception as e:
return f"Error analyzing sentiment: {str(e)}"
# --- Emotion Detection (Placeholder) ---
def detect_emotion(text):
# Replace with your actual emotion detection logic
return "Emotion detection not implemented"
# --- Suggestion Generation (Placeholder) ---
def provide_suggestions(emotion):
# Replace with your actual suggestion generation logic
return pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
# --- Google Places API Functions ---
def get_places_data(query, location, radius, api_key, next_page_token=None):
params = {
"query": query,
"location": location,
"radius": radius,
"key": api_key
}
if next_page_token:
params["pagetoken"] = next_page_token
response = requests.get(url, params=params)
if response.status_code == 200:
return response.json()
else:
print(f"Error: {response.status_code} - {response.text}")
return None
def get_place_details(place_id, api_key):
params = {"place_id": place_id, "key": api_key}
response = requests.get(places_details_url, params=params)
if response.status_code == 200:
details_data = response.json().get("result", {})
return {
"phone_number": details_data.get("formatted_phone_number", "Not available"),
"website": details_data.get("website", "Not available")
}
else:
return {}
def scrape_website_from_google_maps(place_name):
chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
driver = webdriver.Chrome(options=chrome_options)
search_url = f"https://www.google.com/maps/search/{place_name.replace(' ', '+')}"
driver.get(search_url)
time.sleep(5)
try:
website_element = driver.find_element("xpath", '//a[contains(@aria-label, "Visit") and contains(@aria-label, "website")]')
website_url = website_element.get_attribute('href')
except:
website_url = "Not available"
driver.quit()
return website_url
def get_all_places(query, location, radius, api_key):
all_results = []
next_page_token = None
while True:
data = get_places_data(query + f" in {location}", location, radius, api_key, next_page_token)
if data:
results = data.get('results', [])
for place in results:
place_id = place.get("place_id")
name = place.get("name")
address = place.get("formatted_address")
details = get_place_details(place_id, api_key)
phone_number = details.get("phone_number", "Not available")
website = details.get("website", "Not available")
all_results.append([name, address, phone_number, website])
next_page_token = data.get('next_page_token')
if not next_page_token:
break
else:
break
return all_results
# --- Gradio Interface ---
def gradio_interface(message, location, state, btn_chat, btn_search):
history = state or []
if len(history) == 0:
if btn_chat:
history, _ = chat(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
suggestions = provide_suggestions(emotion)
if location:
try:
wellness_results = pd.DataFrame(get_all_places(query, location, 50000, GOOGLE_MAPS_API_KEY), columns=["Name", "Address", "Phone", "Website"])
except Exception as e:
wellness_results = pd.DataFrame([["Error fetching data: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
else:
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
else:
history = history
sentiment = ""
emotion = ""
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
elif len(history) > 0 and location == "":
if btn_chat:
history, _ = chat(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
suggestions = provide_suggestions(emotion)
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
else:
history = history
sentiment = ""
emotion = ""
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
elif len(history) > 0 and location != "" and btn_search:
try:
wellness_results = pd.DataFrame(get_all_places(query, location, 50000, GOOGLE_MAPS_API_KEY), columns=["Name", "Address", "Phone", "Website"])
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
suggestions = provide_suggestions(emotion)
history, _ = chat(message, history)
except Exception as e:
wellness_results = pd.DataFrame([["Error: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
else:
history = history
sentiment = ""
emotion = ""
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
return history, sentiment, emotion, suggestions, wellness_results, history
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"),
gr.Textbox(label="Enter your location (e.g., 'Hawaii, USA')", placeholder="Enter your location (optional)"),
gr.State(),
gr.Button("Chat"),
gr.Button("Search")
],
outputs=[
gr.Chatbot(label="Chatbot Responses"),
gr.Textbox(label="Sentiment Analysis"),
gr.Textbox(label="Emotion Detected"),
gr.DataFrame(label="Suggested Articles & Videos"),
gr.DataFrame(label="Nearby Wellness Professionals"),
gr.State()
],
live=True,
title="Mental Health Chatbot with Wellness Professional Search",
description="This chatbot provides mental health support with sentiment analysis, emotion detection, suggestions, and a list of nearby wellness professionals. Interact with the chatbot first, then enter a location to search."
)
iface.launch(debug=True, share=True)
|