File size: 10,792 Bytes
1aa6549
334ba26
 
dacc7c0
4525308
 
ef41952
4525308
334ba26
 
0e313c1
4525308
 
23325a3
fa97be4
dacc7c0
334ba26
dacc7c0
 
334ba26
 
4525308
dacc7c0
 
 
 
4525308
334ba26
4525308
dacc7c0
 
 
 
456391b
0e313c1
dacc7c0
0e313c1
 
 
 
 
9164577
4525308
dacc7c0
 
 
 
4525308
0e313c1
dacc7c0
334ba26
 
 
 
 
 
 
 
 
 
dacc7c0
 
334ba26
 
4525308
334ba26
dacc7c0
334ba26
 
 
dacc7c0
 
334ba26
 
 
 
 
 
 
 
 
4525308
334ba26
ebca5ff
 
1aa6549
dacc7c0
 
 
 
 
 
 
 
 
 
 
1aa6549
dacc7c0
 
 
 
e6396eb
 
 
0e313c1
674b44a
dacc7c0
1aa6549
 
dacc7c0
1aa6549
 
 
 
 
 
 
 
 
 
 
dacc7c0
1aa6549
 
 
 
 
 
dacc7c0
1aa6549
 
 
 
 
 
dacc7c0
1aa6549
 
 
 
 
 
dacc7c0
1aa6549
 
 
 
 
4525308
dacc7c0
 
23325a3
 
 
 
 
4525308
 
dacc7c0
 
 
 
 
 
4525308
 
dacc7c0
4525308
 
23325a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4525308
 
 
 
 
 
 
 
23325a3
 
 
4525308
23325a3
 
 
4525308
 
 
 
 
 
 
 
 
 
23325a3
 
 
 
 
 
 
 
 
 
4525308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23325a3
 
 
 
4525308
 
 
 
 
0e313c1
dacc7c0
0e313c1
dacc7c0
456391b
 
0bf96c0
 
456391b
 
 
 
 
 
0bf96c0
456391b
 
 
0bf96c0
 
23325a3
 
 
 
456391b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import requests
import pandas as pd
import os

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json
try:
    with open("intents.json") as file:
        data = json.load(file)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")

# Load preprocessed data from pickle
try:
    with open("data.pickle", "rb") as f:
        words, labels, training, output = pickle.load(f)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")

# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
try:
    model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
    raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")

# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function (Chatbot)
def chat(message, history):
    history = history or []
    message = message.lower()
    
    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]

        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"
    except Exception as e:
        response = f"An error occurred: {str(e)}"
    
    history.append((message, response))
    return history, history

# Sentiment Analysis
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
    return f"**Predicted Sentiment:** {sentiment}"

# Emotion Detection
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)

def detect_emotion(user_input):
    result = pipe(user_input)
    emotion = result[0]['label']
    return emotion

def provide_suggestions(emotion):
    suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])

    if emotion == 'joy':
        suggestions = suggestions.append({
            "Subject": "Relaxation Techniques",
            "Article URL": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation",
            "Video URL": "https://youtu.be/m1vaUGtyo-A"
        }, ignore_index=True)
        suggestions = suggestions.append({
            "Subject": "Dealing with Stress",
            "Article URL": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
            "Video URL": "https://youtu.be/MIc299Flibs"
        }, ignore_index=True)

    elif emotion == 'anger':
        suggestions = suggestions.append({
            "Subject": "Managing Anger",
            "Article URL": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
            "Video URL": "https://youtu.be/MIc299Flibs"
        }, ignore_index=True)

    elif emotion == 'fear':
        suggestions = suggestions.append({
            "Subject": "Coping with Anxiety",
            "Article URL": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
            "Video URL": "https://youtu.be/yGKKz185M5o"
        }, ignore_index=True)

    elif emotion == 'sadness':
        suggestions = suggestions.append({
            "Subject": "Dealing with Sadness",
            "Article URL": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
            "Video URL": "https://youtu.be/-e-4Kx5px_I"
        }, ignore_index=True)

    elif emotion == 'surprise':
        suggestions = suggestions.append({
            "Subject": "Managing Stress",
            "Article URL": "https://www.health.harvard.edu/health-a-to-z",
            "Video URL": "https://youtu.be/m1vaUGtyo-A"
        }, ignore_index=True)
        
    return suggestions

# Google Places API integration
api_key = os.environ.get("GOOGLE_API_KEY") # Get API key from environment variable

url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"

def get_places_data(query, location, radius, api_key, next_page_token=None):
    params = {
        "query": query,
        "location": location,
        "radius": radius,
        "key": api_key
    }
    if next_page_token:
        params["pagetoken"] = next_page_token
    response = requests.get(url, params=params)
    return response.json() if response.status_code == 200 else None

def get_place_details(place_id, api_key):
    params = {
        "place_id": place_id,
        "key": api_key
    }
    response = requests.get(places_details_url, params=params)
    if response.status_code == 200:
        details_data = response.json().get("result", {})
        return {
            "opening_hours": details_data.get("opening_hours", {}).get("weekday_text", "Not available"),
            "reviews": details_data.get("reviews", "Not available"),
            "phone_number": details_data.get("formatted_phone_number", "Not available"),
            "website": details_data.get("website", "Not available")
        }
    else:
        return {}

def get_all_places(query, location, radius, api_key):
    all_results = []
    next_page_token = None
    while True:
        data = get_places_data(query, location, radius, api_key, next_page_token)
        if data:
            results = data.get('results', [])
            for place in results:
                place_id = place.get("place_id", "N/A") # Handle missing place_id
                name = place.get("name", "N/A") # Handle missing name
                address = place.get("formatted_address", "N/A") # Handle missing address
                website = place.get("website", "Not available")
                details = get_place_details(place_id, api_key) if place_id != "N/A" else {} #Avoid error if place_id is missing
                phone_number = details.get("phone_number", "Not available")
                all_results.append([name, address, phone_number, website])
            next_page_token = data.get('next_page_token')
            if not next_page_token:
                break
        else:
            break
    return all_results

def search_wellness_professionals(location):
    query = "therapist OR counselor OR mental health professional"
    radius = 50000
    try:
        google_places_data = get_all_places(query, location, radius, api_key)
        if google_places_data:
            df = pd.DataFrame(google_places_data, columns=["Name", "Address", "Phone", "Website"])
            return df
        else:
            return pd.DataFrame([["No data found.", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
    except Exception as e:
        return pd.DataFrame([["Error fetching data: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])


# Gradio Interface
def gradio_interface(message, location, state):
    history = state or []  # If state is None, initialize it as an empty list
    
    # Stage 1: Mental Health Chatbot
    history, _ = chat(message, history)
    
    # Stage 2: Sentiment Analysis
    sentiment = analyze_sentiment(message)
    
    # Stage 3: Emotion Detection and Suggestions
    emotion = detect_emotion(message)
    suggestions = provide_suggestions(emotion)
    
    # Stage 4: Search for Wellness Professionals
    try:
        wellness_results = search_wellness_professionals(location)
    except Exception as e:
        wellness_results = pd.DataFrame([["Error: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
    
    # Return the results in a tabular form within the Gradio interface
    return history, sentiment, emotion, suggestions, wellness_results, history  # Last 'history' is for state

# Gradio interface setup
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"),
        gr.Textbox(label="Enter your location (e.g., 'Hawaii, USA')", placeholder="Enter your location"),
        gr.State()  # To maintain state (chat history)
    ],
    outputs=[
        gr.Chatbot(label="Chatbot Responses"),
        gr.Textbox(label="Sentiment Analysis"),
        gr.Textbox(label="Emotion Detected"),
        gr.DataFrame(label="Suggested Articles & Videos"),
        gr.DataFrame(label="Nearby Wellness Professionals"),
        gr.State()  # To maintain state (chat history)
    ],
    live=True,
    title="Mental Health Chatbot with Wellness Professional Search",
    description="This chatbot provides mental health support with sentiment analysis, emotion detection, suggestions, and a list of nearby wellness professionals."
)

# Check for API key; if not found, print an error message
if api_key is None:
    print("Error: GOOGLE_MAPS_API_KEY environment variable not set. Please set this environment variable with your Google Maps API key.")

# Launch the interface
iface.launch(debug=True, share=True)