Spaces:
Sleeping
Sleeping
File size: 7,170 Bytes
2ae19d7 881aad3 4184e5e fa97be4 4184e5e 334ba26 dacc7c0 e623c13 334ba26 4184e5e 936af04 334ba26 4184e5e 936af04 0e313c1 4184e5e c69efb6 936af04 c69efb6 4184e5e 936af04 4184e5e 936af04 4525308 4184e5e e623c13 4184e5e 936af04 4184e5e 936af04 4184e5e 936af04 4184e5e 936af04 4184e5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import nltk
import numpy as np
import tflearn
import tensorflow
import random
import json
import pickle
import gradio as gr
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json for Mental Health Chatbot
with open("intents.json") as file:
data = json.load(file)
# Load preprocessed data for Mental Health Chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the model structure for Mental Health Chatbot
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
# Function to process user input into a bag-of-words format for Chatbot
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function for Mental Health Chatbot
def chatbot(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment Analysis using Hugging Face model
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] # Assuming 3 classes
return f"Predicted Sentiment: {sentiment}"
# Emotion Detection using Hugging Face model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
return f"Emotion Detected: {emotion}"
# Initialize Google Maps API client securely
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Function to search for health professionals
def search_health_professionals(query, location, radius=10000):
places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
return places_result.get('results', [])
# Function to get directions and display on Gradio UI
def get_health_professionals_and_map(current_location, health_professional_query):
route_info = ""
m = None # Default to None
try:
# Geocode the current location (i.e., convert it to latitude and longitude)
geocode_result = gmaps.geocode(current_location)
if not geocode_result:
route_info = "Could not retrieve location coordinates. Please enter a valid location."
return route_info, m
location_coords = geocode_result[0]['geometry']['location']
lat, lon = location_coords['lat'], location_coords['lng']
# Search for health professionals
health_professionals = search_health_professionals(health_professional_query, (lat, lon))
if health_professionals:
route_info = "Health professionals found:\n"
m = folium.Map(location=[lat, lon], zoom_start=12)
for professional in health_professionals:
name = professional['name']
vicinity = professional.get('vicinity', 'N/A')
rating = professional.get('rating', 'N/A')
folium.Marker([professional['geometry']['location']['lat'], professional['geometry']['location']['lng']],
popup=f"{name}\n{vicinity}\nRating: {rating}").add_to(m)
route_info += f"- {name} ({rating} stars): {vicinity}\n"
else:
route_info = "No health professionals found matching your query."
m = folium.Map(location=[lat, lon], zoom_start=12) # Default map if no professionals are found
except Exception as e:
route_info = f"Error: {str(e)}"
m = folium.Map(location=[20, 0], zoom_start=2) # Default map if any error occurs
return route_info, m._repr_html_()
# Gradio interface
def gradio_app(message, location, health_query, history):
# Chatbot interaction
history, _ = chatbot(message, history)
# Sentiment analysis
sentiment_response = analyze_sentiment(message)
# Emotion detection
emotion_response = detect_emotion(message)
# Health professional search and map display
route_info, map_html = get_health_professionals_and_map(location, health_query)
return history, sentiment_response, emotion_response, route_info, map_html
# Gradio UI components
message_input = gr.Textbox(lines=1, label="Message")
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
chat_history = gr.Chatbot(label="Chat History")
# Outputs
sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
emotion_output = gr.Textbox(label="Emotion Detection Result")
route_info_output = gr.Textbox(label="Health Professionals Information")
map_output = gr.HTML(label="Map with Health Professionals")
# Create Gradio interface
iface = gr.Interface(
fn=gradio_app,
inputs=[message_input, location_input, health_query_input, "state"],
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output],
allow_flagging="never",
live=True,
title="Wellbeing App: Mental Health, Sentiment, Emotion Detection & Health Professional Search"
)
iface.launch() |