File size: 7,170 Bytes
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
 
 
 
 
 
fa97be4
4184e5e
334ba26
dacc7c0
e623c13
334ba26
 
4184e5e
936af04
 
334ba26
4184e5e
936af04
 
0e313c1
4184e5e
c69efb6
 
 
 
 
 
 
 
936af04
c69efb6
4184e5e
936af04
 
4184e5e
936af04
 
 
 
 
 
4525308
4184e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e623c13
4184e5e
 
 
 
 
 
 
936af04
4184e5e
 
 
936af04
4184e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
936af04
4184e5e
 
 
 
 
 
936af04
 
4184e5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import nltk
import numpy as np
import tflearn
import tensorflow
import random
import json
import pickle
import gradio as gr
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import os

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json for Mental Health Chatbot
with open("intents.json") as file:
    data = json.load(file)

# Load preprocessed data for Mental Health Chatbot
with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the model structure for Mental Health Chatbot
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")

# Function to process user input into a bag-of-words format for Chatbot
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function for Mental Health Chatbot
def chatbot(message, history):
    history = history or []
    message = message.lower()
    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]

        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"
    except Exception as e:
        response = f"An error occurred: {str(e)}"
    
    history.append((message, response))
    return history, history


# Sentiment Analysis using Hugging Face model
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

def analyze_sentiment(user_input):
    inputs = tokenizer(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment = ["Negative", "Neutral", "Positive"][predicted_class]  # Assuming 3 classes
    return f"Predicted Sentiment: {sentiment}"

# Emotion Detection using Hugging Face model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]['label']
    return f"Emotion Detected: {emotion}"

# Initialize Google Maps API client securely
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))

# Function to search for health professionals
def search_health_professionals(query, location, radius=10000):
    places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
    return places_result.get('results', [])

# Function to get directions and display on Gradio UI
def get_health_professionals_and_map(current_location, health_professional_query):
    route_info = ""
    m = None  # Default to None
    try:
        # Geocode the current location (i.e., convert it to latitude and longitude)
        geocode_result = gmaps.geocode(current_location)
        if not geocode_result:
            route_info = "Could not retrieve location coordinates. Please enter a valid location."
            return route_info, m
        
        location_coords = geocode_result[0]['geometry']['location']
        lat, lon = location_coords['lat'], location_coords['lng']
        
        # Search for health professionals
        health_professionals = search_health_professionals(health_professional_query, (lat, lon))
        
        if health_professionals:
            route_info = "Health professionals found:\n"
            m = folium.Map(location=[lat, lon], zoom_start=12)
            for professional in health_professionals:
                name = professional['name']
                vicinity = professional.get('vicinity', 'N/A')
                rating = professional.get('rating', 'N/A')
                folium.Marker([professional['geometry']['location']['lat'], professional['geometry']['location']['lng']], 
                              popup=f"{name}\n{vicinity}\nRating: {rating}").add_to(m)
                route_info += f"- {name} ({rating} stars): {vicinity}\n"
        else:
            route_info = "No health professionals found matching your query."
            m = folium.Map(location=[lat, lon], zoom_start=12)  # Default map if no professionals are found
        
    except Exception as e:
        route_info = f"Error: {str(e)}"
        m = folium.Map(location=[20, 0], zoom_start=2)  # Default map if any error occurs
    
    return route_info, m._repr_html_()

# Gradio interface
def gradio_app(message, location, health_query, history):
    # Chatbot interaction
    history, _ = chatbot(message, history)
    
    # Sentiment analysis
    sentiment_response = analyze_sentiment(message)
    
    # Emotion detection
    emotion_response = detect_emotion(message)
    
    # Health professional search and map display
    route_info, map_html = get_health_professionals_and_map(location, health_query)
    
    return history, sentiment_response, emotion_response, route_info, map_html

# Gradio UI components
message_input = gr.Textbox(lines=1, label="Message")
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")

chat_history = gr.Chatbot(label="Chat History")

# Outputs
sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
emotion_output = gr.Textbox(label="Emotion Detection Result")
route_info_output = gr.Textbox(label="Health Professionals Information")
map_output = gr.HTML(label="Map with Health Professionals")

# Create Gradio interface
iface = gr.Interface(
    fn=gradio_app, 
    inputs=[message_input, location_input, health_query_input, "state"], 
    outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output],
    allow_flagging="never",
    live=True,
    title="Wellbeing App: Mental Health, Sentiment, Emotion Detection & Health Professional Search"
)

iface.launch()