File size: 6,451 Bytes
334ba26
 
0e313c1
 
 
334ba26
7684892
ebca5ff
334ba26
 
0e313c1
 
 
 
e859494
0e313c1
 
99a3ba4
0e313c1
fa97be4
0e313c1
 
 
7684892
0e313c1
334ba26
 
 
0e313c1
 
 
334ba26
 
0e313c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af44e7d
0e313c1
 
 
 
 
 
 
 
 
99a3ba4
0e313c1
 
 
 
 
 
 
 
 
 
 
99a3ba4
0e313c1
 
 
 
 
 
 
 
 
 
 
 
 
334ba26
 
 
 
 
 
 
 
 
 
0e313c1
334ba26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebca5ff
 
0e313c1
e6396eb
0e313c1
e6396eb
 
0e313c1
674b44a
0e313c1
 
 
 
d7c7798
0e313c1
 
99a3ba4
0e313c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674b44a
0e313c1
 
 
99a3ba4
0e313c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a3ba4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import nltk
import numpy as np
import random
import json
import pickle
import gradio as gr
import requests
import folium
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import tensorflow as tf
import tflearn
import torch
import pandas as pd
import time
from bs4 import BeautifulSoup
import re  # Added for regex operations
import os

# Google Places API endpoint
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"

# Initialize necessary libraries for chatbot and NLP
nltk.download('punkt')
stemmer = LancasterStemmer()

# Load the chatbot intents file
with open("intents.json") as file:
    data = json.load(file)

# Load preprocessed data from pickle
with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")

# Emotion and sentiment analysis model
def load_model():
    tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
    model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
    return tokenizer, model

tokenizer, emotion_model = load_model()

# Google Places API query function
def get_places_data(query, location, radius=5000, api_key="GOOGLE_API_KEY"):
    params = {
        "query": query,
        "location": location,
        "radius": radius,
        "key": api_key
    }
    response = requests.get(url, params=params)
    if response.status_code == 200:
        data = response.json()
        return data.get('results', [])
    else:
        return []

# Map generation function
def create_map(locations):
    m = folium.Map(location=[21.3, -157.8], zoom_start=12)
    for loc in locations:
        name = loc.get("name", "No Name")
        lat = loc['geometry']['location']['lat']
        lng = loc['geometry']['location']['lng']
        folium.Marker([lat, lng], popup=name).add_to(m)
    return m._repr_html_()  # Return HTML representation

# Sentiment Analysis function
def analyze_sentiment(user_input):
    tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
    model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
    inputs = tokenizer(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
    return sentiment

# Chatbot function for user interaction
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def chatbot(message, history):
    history = history or []
    message = message.lower()
    try:
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"
    except Exception as e:
        response = f"An error occurred: {str(e)}"
    history.append((message, response))
    return history, history

# Emotion Detection function
def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=emotion_model, tokenizer=tokenizer)
    result = pipe(user_input)
    emotion = result[0]['label']
    return emotion

# Scraping the website to extract phone number or email
def scrape_website_for_contact_info(website):
    phone_number = "Not available"
    email = "Not available"
    try:
        response = requests.get(website, timeout=5)
        soup = BeautifulSoup(response.content, 'html.parser')
        phone_match = re.search(r'$$?\+?[0-9]*$$?[0-9_\- $$$$]*', soup.get_text())
        if phone_match:
            phone_number = phone_match.group()
        email_match = re.search(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', soup.get_text())
        if email_match:
            email = email_match.group()
    except Exception as e:
        print(f"Error scraping website {website}: {e}")
    return phone_number, email

# Main Gradio interface for emotion detection and chatbot
def emotion_and_chatbot(user_input, history, query, location):
    # Emotion Detection
    emotion = detect_emotion(user_input)
    sentiment = analyze_sentiment(user_input)
    emotion_response = f"Emotion Detected: {emotion}. Sentiment: {sentiment}"
    
    # Search Places (for wellness or other queries)
    places_data = get_places_data(query, location)
    places_map = create_map(places_data) if places_data else "No places found."
    
    # Chatbot response
    history, _ = chatbot(user_input, history)
    
    return emotion_response, places_map, history, history

# Gradio interface setup
iface = gr.Interface(
    fn=emotion_and_chatbot,
    inputs=[
        gr.Textbox(label="Enter your message", placeholder="How are you feeling?"),
        "state",  # Chat history
        gr.Textbox(label="Search Query (e.g. wellness)", placeholder="e.g. therapist"),
        gr.Textbox(label="Location (latitude,longitude)", placeholder="e.g. 21.3,-157.8")
    ],
    outputs=[
        gr.Textbox(label="Emotion and Sentiment"),
        gr.HTML(label="Places Map"),
        gr.Chatbot(label="Chatbot History"),
        "state"
    ],
    title="Wellbeing Chatbot with Emotion Detection & Location Search",
    description="A chatbot that provides mental health support, analyzes emotions, and helps find wellness professionals near you."
)

# Launch Gradio app
if __name__ == "__main__":
    iface.launch(debug=True)