Testing / app.py
DreamStream-1's picture
Update app.py
19503c4 verified
raw
history blame
10.6 kB
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import requests
import pandas as pd
import os
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# --- Constants ---
GOOGLE_MAPS_API_KEY = os.environ.get("GOOGLE_MAPS_API_KEY") # Get API key from environment variable
if not GOOGLE_MAPS_API_KEY:
raise ValueError("Error: GOOGLE_MAPS_API_KEY environment variable not set.")
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
# --- Chatbot Logic ---
stemmer = LancasterStemmer()
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found.")
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found.")
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chat(message, history):
history = history or []
message = message.lower()
try:
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# --- Sentiment Analysis ---
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(text):
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
return f"**Predicted Sentiment:** {sentiment}"
except Exception as e:
return f"Error analyzing sentiment: {str(e)}"
# --- Emotion Detection (Placeholder) ---
def detect_emotion(text):
# Replace with your actual emotion detection logic
return "Emotion detection not implemented"
# --- Suggestion Generation (Placeholder) ---
def provide_suggestions(emotion):
# Replace with your actual suggestion generation logic
return pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
# --- Google Places API Functions ---
def get_places_data(query, location, radius, api_key, next_page_token=None):
params = {
"query": query,
"location": location,
"radius": radius,
"key": api_key
}
if next_page_token:
params["pagetoken"] = next_page_token
response = requests.get(url, params=params)
if response.status_code == 200:
return response.json()
else:
print(f"Error: {response.status_code} - {response.text}")
return None
def get_place_details(place_id, api_key):
params = {"place_id": place_id, "key": api_key}
response = requests.get(places_details_url, params=params)
if response.status_code == 200:
details_data = response.json().get("result", {})
return {
"phone_number": details_data.get("formatted_phone_number", "Not available"),
"website": details_data.get("website", "Not available")
}
else:
return {}
def scrape_website_from_google_maps(place_name):
chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
driver = webdriver.Chrome(options=chrome_options)
search_url = f"https://www.google.com/maps/search/{place_name.replace(' ', '+')}"
driver.get(search_url)
time.sleep(5)
try:
website_element = driver.find_element("xpath", '//a[contains(@aria-label, "Visit") and contains(@aria-label, "website")]')
website_url = website_element.get_attribute('href')
except:
website_url = "Not available"
driver.quit()
return website_url
def get_all_places(query, location, radius, api_key):
all_results = []
next_page_token = None
while True:
data = get_places_data(query + f" in {location}", location, radius, api_key, next_page_token)
if data:
results = data.get('results', [])
for place in results:
place_id = place.get("place_id")
name = place.get("name")
address = place.get("formatted_address")
details = get_place_details(place_id, api_key)
phone_number = details.get("phone_number", "Not available")
website = details.get("website", "Not available")
all_results.append([name, address, phone_number, website])
next_page_token = data.get('next_page_token')
if not next_page_token:
break
else:
break
return all_results
# --- Gradio Interface ---
def gradio_interface(message, location, state, btn_chat, btn_search):
history = state or []
if len(history) == 0:
if btn_chat:
history, _ = chat(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
suggestions = provide_suggestions(emotion)
if location:
try:
wellness_results = pd.DataFrame(get_all_places(query, location, 50000, GOOGLE_MAPS_API_KEY), columns=["Name", "Address", "Phone", "Website"])
except Exception as e:
wellness_results = pd.DataFrame([["Error fetching data: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
else:
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
else:
history = history
sentiment = ""
emotion = ""
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
elif len(history) > 0 and location == "":
if btn_chat:
history, _ = chat(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
suggestions = provide_suggestions(emotion)
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
else:
history = history
sentiment = ""
emotion = ""
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
elif len(history) > 0 and location != "" and btn_search:
try:
wellness_results = pd.DataFrame(get_all_places(query, location, 50000, GOOGLE_MAPS_API_KEY), columns=["Name", "Address", "Phone", "Website"])
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
suggestions = provide_suggestions(emotion)
history, _ = chat(message, history)
except Exception as e:
wellness_results = pd.DataFrame([["Error: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
else:
history = history
sentiment = ""
emotion = ""
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
return history, sentiment, emotion, suggestions, wellness_results, history
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"),
gr.Textbox(label="Enter your location (e.g., 'Hawaii, USA')", placeholder="Enter your location (optional)"),
gr.State(),
gr.Button("Chat"),
gr.Button("Search")
],
outputs=[
gr.Chatbot(label="Chatbot Responses"),
gr.Textbox(label="Sentiment Analysis"),
gr.Textbox(label="Emotion Detected"),
gr.DataFrame(label="Suggested Articles & Videos"),
gr.DataFrame(label="Nearby Wellness Professionals"),
gr.State()
],
live=True,
title="Mental Health Chatbot with Wellness Professional Search",
description="This chatbot provides mental health support with sentiment analysis, emotion detection, suggestions, and a list of nearby wellness professionals. Interact with the chatbot first, then enter a location to search."
)
iface.launch(debug=True, share=True)