Testing / app.py
DreamStream-1's picture
Update app.py
2fd1c83 verified
raw
history blame
8.02 kB
import json
import pickle
import random
import nltk
import numpy as np
import tflearn
import gradio as gr
import requests
import torch
import pandas as pd
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment analysis setup
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Emotion detection setup
def load_emotion_model():
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
return tokenizer, model
tokenizer_emotion, model_emotion = load_emotion_model()
# Emotion detection function with suggestions in plain English
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
# Provide suggestions based on the detected emotion
if emotion == 'joy':
emotion_msg = "You're feeling happy! Keep up the great mood!"
resources = [
{"subject": "Relaxation Techniques", "link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"},
{"subject": "Dealing with Stress", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
{"subject": "Emotional Wellness Toolkit", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"}
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
elif emotion == 'anger':
emotion_msg = "You're feeling angry. It's okay to feel this way. Let's try to calm down."
resources = [
{"subject": "Emotional Wellness Toolkit", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
{"subject": "Stress Management Tips", "link": "https://www.health.harvard.edu/health-a-to-z"},
{"subject": "Dealing with Anger", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"}
]
video_link = "Watch on YouTube: https://youtu.be/MIc299Flibs"
elif emotion == 'fear':
emotion_msg = "You're feeling fearful. Take a moment to breathe and relax."
resources = [
{"subject": "Mindfulness Practices", "link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"},
{"subject": "Coping with Anxiety", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
{"subject": "Emotional Wellness Toolkit", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"}
]
video_link = "Watch on YouTube: https://youtu.be/yGKKz185M5o"
elif emotion == 'sadness':
emotion_msg = "You're feeling sad. It's okay to take a break."
resources = [
{"subject": "Emotional Wellness Toolkit", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
{"subject": "Dealing with Anxiety", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"}
]
video_link = "Watch on YouTube: https://youtu.be/-e-4Kx5px_I"
elif emotion == 'surprise':
emotion_msg = "You're feeling surprised. It's okay to feel neutral!"
resources = [
{"subject": "Managing Stress", "link": "https://www.health.harvard.edu/health-a-to-z"},
{"subject": "Coping Strategies", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"}
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
else:
emotion_msg = "Could not detect emotion."
resources = []
video_link = ""
return emotion_msg, resources, video_link
# Create the interface with multiple buttons
def interface_function(message, action, history):
history = history or []
if action == "Chat":
# Use chat function if 'Chat' button is clicked
history, _ = chat(message, history)
return history, history
elif action == "Detect Emotion":
# Detect emotion if 'Detect Emotion' button is clicked
emotion_msg, resources, video_link = detect_emotion(message)
result = f"Emotion: {emotion_msg}\nResources:\n"
for res in resources:
result += f"- {res['subject']}: {res['link']}\n"
result += f"Suggested Video: {video_link}"
return result, history
elif action == "Wellness Resources":
# Return wellness resources if 'Wellness Resources' button is clicked
result = "Here are some wellness resources you can explore:\n"
result += "1. Mental Health Support: https://www.helpguide.org/mental-health/mental-health-support.htm\n"
result += "2. Meditation Guide: https://www.headspace.com/meditation\n"
return result, history
# Gradio interface with multiple buttons
iface = gr.Interface(
fn=interface_function,
inputs=[gr.Textbox(label="Enter message"),
gr.Radio(["Chat", "Detect Emotion", "Wellness Resources"], label="Choose Action"),
gr.State()],
outputs=[gr.Textbox(label="Response"), gr.State()],
allow_flagging="never",
live=True
)
iface.launch(share=True)