Spaces:
Sleeping
Sleeping
File size: 8,024 Bytes
334ba26 7684892 334ba26 7684892 334ba26 5e7f7ee 334ba26 5e7f7ee 7684892 334ba26 ae282f5 334ba26 48a4b0f 334ba26 e6396eb 2fd1c83 e6396eb 2fd1c83 5e7f7ee 2fd1c83 5e7f7ee 2fd1c83 e6396eb 2fd1c83 334ba26 e6396eb 334ba26 613b05f e6396eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import json
import pickle
import random
import nltk
import numpy as np
import tflearn
import gradio as gr
import requests
import torch
import pandas as pd
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment analysis setup
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Emotion detection setup
def load_emotion_model():
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
return tokenizer, model
tokenizer_emotion, model_emotion = load_emotion_model()
# Emotion detection function with suggestions in plain English
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
# Provide suggestions based on the detected emotion
if emotion == 'joy':
emotion_msg = "You're feeling happy! Keep up the great mood!"
resources = [
{"subject": "Relaxation Techniques", "link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"},
{"subject": "Dealing with Stress", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
{"subject": "Emotional Wellness Toolkit", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"}
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
elif emotion == 'anger':
emotion_msg = "You're feeling angry. It's okay to feel this way. Let's try to calm down."
resources = [
{"subject": "Emotional Wellness Toolkit", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
{"subject": "Stress Management Tips", "link": "https://www.health.harvard.edu/health-a-to-z"},
{"subject": "Dealing with Anger", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"}
]
video_link = "Watch on YouTube: https://youtu.be/MIc299Flibs"
elif emotion == 'fear':
emotion_msg = "You're feeling fearful. Take a moment to breathe and relax."
resources = [
{"subject": "Mindfulness Practices", "link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"},
{"subject": "Coping with Anxiety", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
{"subject": "Emotional Wellness Toolkit", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"}
]
video_link = "Watch on YouTube: https://youtu.be/yGKKz185M5o"
elif emotion == 'sadness':
emotion_msg = "You're feeling sad. It's okay to take a break."
resources = [
{"subject": "Emotional Wellness Toolkit", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
{"subject": "Dealing with Anxiety", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"}
]
video_link = "Watch on YouTube: https://youtu.be/-e-4Kx5px_I"
elif emotion == 'surprise':
emotion_msg = "You're feeling surprised. It's okay to feel neutral!"
resources = [
{"subject": "Managing Stress", "link": "https://www.health.harvard.edu/health-a-to-z"},
{"subject": "Coping Strategies", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"}
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
else:
emotion_msg = "Could not detect emotion."
resources = []
video_link = ""
return emotion_msg, resources, video_link
# Create the interface with multiple buttons
def interface_function(message, action, history):
history = history or []
if action == "Chat":
# Use chat function if 'Chat' button is clicked
history, _ = chat(message, history)
return history, history
elif action == "Detect Emotion":
# Detect emotion if 'Detect Emotion' button is clicked
emotion_msg, resources, video_link = detect_emotion(message)
result = f"Emotion: {emotion_msg}\nResources:\n"
for res in resources:
result += f"- {res['subject']}: {res['link']}\n"
result += f"Suggested Video: {video_link}"
return result, history
elif action == "Wellness Resources":
# Return wellness resources if 'Wellness Resources' button is clicked
result = "Here are some wellness resources you can explore:\n"
result += "1. Mental Health Support: https://www.helpguide.org/mental-health/mental-health-support.htm\n"
result += "2. Meditation Guide: https://www.headspace.com/meditation\n"
return result, history
# Gradio interface with multiple buttons
iface = gr.Interface(
fn=interface_function,
inputs=[gr.Textbox(label="Enter message"),
gr.Radio(["Chat", "Detect Emotion", "Wellness Resources"], label="Choose Action"),
gr.State()],
outputs=[gr.Textbox(label="Response"), gr.State()],
allow_flagging="never",
live=True
)
iface.launch(share=True)
|