Testing / app.py
DreamStream-1's picture
Update app.py
4184e5e verified
raw
history blame
7.17 kB
import nltk
import numpy as np
import tflearn
import tensorflow
import random
import json
import pickle
import gradio as gr
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json for Mental Health Chatbot
with open("intents.json") as file:
data = json.load(file)
# Load preprocessed data for Mental Health Chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the model structure for Mental Health Chatbot
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
# Function to process user input into a bag-of-words format for Chatbot
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function for Mental Health Chatbot
def chatbot(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment Analysis using Hugging Face model
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] # Assuming 3 classes
return f"Predicted Sentiment: {sentiment}"
# Emotion Detection using Hugging Face model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
return f"Emotion Detected: {emotion}"
# Initialize Google Maps API client securely
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Function to search for health professionals
def search_health_professionals(query, location, radius=10000):
places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
return places_result.get('results', [])
# Function to get directions and display on Gradio UI
def get_health_professionals_and_map(current_location, health_professional_query):
route_info = ""
m = None # Default to None
try:
# Geocode the current location (i.e., convert it to latitude and longitude)
geocode_result = gmaps.geocode(current_location)
if not geocode_result:
route_info = "Could not retrieve location coordinates. Please enter a valid location."
return route_info, m
location_coords = geocode_result[0]['geometry']['location']
lat, lon = location_coords['lat'], location_coords['lng']
# Search for health professionals
health_professionals = search_health_professionals(health_professional_query, (lat, lon))
if health_professionals:
route_info = "Health professionals found:\n"
m = folium.Map(location=[lat, lon], zoom_start=12)
for professional in health_professionals:
name = professional['name']
vicinity = professional.get('vicinity', 'N/A')
rating = professional.get('rating', 'N/A')
folium.Marker([professional['geometry']['location']['lat'], professional['geometry']['location']['lng']],
popup=f"{name}\n{vicinity}\nRating: {rating}").add_to(m)
route_info += f"- {name} ({rating} stars): {vicinity}\n"
else:
route_info = "No health professionals found matching your query."
m = folium.Map(location=[lat, lon], zoom_start=12) # Default map if no professionals are found
except Exception as e:
route_info = f"Error: {str(e)}"
m = folium.Map(location=[20, 0], zoom_start=2) # Default map if any error occurs
return route_info, m._repr_html_()
# Gradio interface
def gradio_app(message, location, health_query, history):
# Chatbot interaction
history, _ = chatbot(message, history)
# Sentiment analysis
sentiment_response = analyze_sentiment(message)
# Emotion detection
emotion_response = detect_emotion(message)
# Health professional search and map display
route_info, map_html = get_health_professionals_and_map(location, health_query)
return history, sentiment_response, emotion_response, route_info, map_html
# Gradio UI components
message_input = gr.Textbox(lines=1, label="Message")
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
chat_history = gr.Chatbot(label="Chat History")
# Outputs
sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
emotion_output = gr.Textbox(label="Emotion Detection Result")
route_info_output = gr.Textbox(label="Health Professionals Information")
map_output = gr.HTML(label="Map with Health Professionals")
# Create Gradio interface
iface = gr.Interface(
fn=gradio_app,
inputs=[message_input, location_input, health_query_input, "state"],
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output],
allow_flagging="never",
live=True,
title="Wellbeing App: Mental Health, Sentiment, Emotion Detection & Health Professional Search"
)
iface.launch()