Testing / app.py
DreamStream-1's picture
Update app.py
48a4b0f verified
raw
history blame
9.26 kB
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import requests
import re
from bs4 import BeautifulSoup
import time
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history, state):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
history.append((message, response))
# Update state to move to the next feature
state['step'] = 2 # Move to sentiment analysis
except Exception as e:
response = f"An error occurred: {str(e)}"
return history, history, state
# Load pre-trained model and tokenizer for sentiment analysis
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Function for sentiment analysis
def analyze_sentiment(text, state):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = sentiment_model(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
# Update state to move to the next feature
state['step'] = 3 # Move to emotion detection and suggestions
return sentiment, state
# Load pre-trained model and tokenizer for emotion detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Function for emotion detection
def detect_emotion(text, state):
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
result = pipe(text)
emotion = result[0]['label']
# Provide suggestions based on emotion
suggestions = provide_suggestions(emotion)
# Update state to move to the next feature
state['step'] = 4 # Move to wellness professional search
return emotion, suggestions, state
# Suggestions based on detected emotion
def provide_suggestions(emotion):
if emotion == 'joy':
return "You're feeling happy! Keep up the great mood!"
elif emotion == 'anger':
return "You're feeling angry. It's okay to feel this way. Let's try to calm down."
elif emotion == 'fear':
return "You're feeling fearful. Take deep breaths, everything will be okay."
elif emotion == 'sadness':
return "You're feeling sad. It's okay, things will get better. You're not alone."
else:
return "Sorry, no suggestions available for this emotion."
# Function to find wellness professionals
def find_wellness_professionals(location, state):
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist in " + location
api_key = "YOUR_GOOGLE_API_KEY" # Replace with your own API key
location_coords = "21.3,-157.8" # Default to Oahu, Hawaii
radius = 50000 # 50 km radius
google_places_data = get_all_places(query, location_coords, radius, api_key)
if google_places_data:
df = pd.DataFrame(google_places_data, columns=[
"Name", "Address", "Phone", "Rating", "Business Status",
"User Ratings Total", "Website", "Types", "Latitude", "Longitude",
"Opening Hours", "Reviews", "Email"
])
return df, state
else:
return pd.DataFrame(), state
# The functions for scraping websites and fetching details
def get_all_places(query, location, radius, api_key):
all_results = []
next_page_token = None
while True:
data = get_places_data(query, location, radius, api_key, next_page_token)
if data:
results = data.get('results', [])
for place in results:
place_id = place.get("place_id")
name = place.get("name")
address = place.get("formatted_address")
rating = place.get("rating", "Not available")
business_status = place.get("business_status", "Not available")
user_ratings_total = place.get("user_ratings_total", "Not available")
website = place.get("website", "Not available")
types = ", ".join(place.get("types", []))
location = place.get("geometry", {}).get("location", {})
latitude = location.get("lat", "Not available")
longitude = location.get("lng", "Not available")
details = get_place_details(place_id, api_key)
phone_number = details.get("phone_number", "Not available")
email = details.get("email", "Not available")
all_results.append([name, address, phone_number, rating, business_status,
user_ratings_total, website, types, latitude, longitude,
details.get("opening_hours", "Not available"),
details.get("reviews", "Not available"), email])
next_page_token = data.get('next_page_token')
if not next_page_token:
break
time.sleep(2)
return all_results
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Wellbeing Support System")
state = gr.State({"step": 1}) # Track the flow step
with gr.Tab("Chatbot"):
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
msg.submit(chat, inputs=[msg, chatbot, state], outputs=[chatbot, chatbot, state])
clear.click(lambda: None, None, chatbot)
with gr.Tab("Sentiment Analysis"):
sentiment_output = gr.Textbox(label="Sentiment:")
text_input = gr.Textbox(label="Enter text to analyze sentiment:")
analyze_button = gr.Button("Analyze Sentiment")
analyze_button.click(analyze_sentiment, inputs=[text_input, state], outputs=[sentiment_output, state])
with gr.Tab("Emotion Detection & Suggestions"):
emotion_input = gr.Textbox(label="How are you feeling today?", value="Enter your thoughts here...")
detect_button = gr.Button("Detect Emotion")
emotion_output = gr.Textbox(label="Detected Emotion:")
suggestions_output = gr.Textbox(label="Suggestions:")
detect_button.click(detect_emotion, inputs=[emotion_input, state], outputs=[emotion_output, suggestions_output, state])
with gr.Tab("Find Local Wellness Professionals"):
location_input = gr.Textbox(label="Enter your location:", value="Hawaii")
search_button = gr.Button("Search")
results_output = gr.Dataframe(label="Search Results")
search_button.click(find_wellness_professionals, inputs=[location_input, state], outputs=[results_output, state])
demo.launch()