Testing / app.py
DreamStream-1's picture
Update app.py
4e61093 verified
raw
history blame
8.1 kB
import os
import gradio as gr
import nltk
import numpy as np
import tensorflow as tf
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Ensure necessary NLTK resources are downloaded
nltk.download("punkt")
# Initialize stemmer
stemmer = LancasterStemmer()
# Load intents.json and training data for chatbot
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Sentiment Analysis Model (Hugging Face)
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Emotion Detection Model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Process Text Input for Chatbot
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Functionality
def chatbot(message, history):
history = history or []
try:
results = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(results)]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)} πŸ’₯"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, response
# Detect Sentiment
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment_class]
# Detect Emotion
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"]
emotion_map = {
"joy": "😊 Joy",
"anger": "😠 Anger",
"sadness": "😒 Sadness",
"fear": "😨 Fear",
"surprise": "😲 Surprise",
"neutral": "😐 Neutral",
}
return emotion_map.get(emotion, "Unknown Emotion πŸ€”")
# Generate Suggestions for Detected Emotion
def generate_suggestions(emotion):
resources = {
"😊 Joy": [
["Relaxation Techniques", "Relaxation", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Dealing with Stress", "Stress Management", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", "Wellness", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Videos", "Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
"😒 Sadness": [
["Emotional Wellness Toolkit", "Wellness", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Dealing with Anxiety", "Anxiety Management", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Videos", "Video", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
],
"😨 Fear": [
["Mindfulness Practices", "Mindfulness", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Coping with Anxiety", "Anxiety Management", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", "Wellness", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Videos", "Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
]
}
return resources.get(emotion.split(" ")[1], [["No specific suggestions available", "", ""]])
# Search Professionals and Generate Map
def get_health_professionals_and_map(location, query):
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(
location=(lat, lng), radius=10000, type="doctor", keyword=query
)["results"]
map_ = folium.Map(location=(lat, lng), zoom_start=13)
professionals = []
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
lat, lng = place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]
folium.Marker([lat, lng], popup=place["name"]).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found"], ""
except Exception as e:
return [f"Error: {e}"], ""
# Gradio App Function
def app_function(message, location, query, history):
chatbot_history, _ = chatbot(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
suggestions = generate_suggestions(emotion)
professionals_info, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals_info, map_html
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# 🌟 Well-Being Companion")
gr.Markdown("Empowering your mental health journey πŸ’š")
with gr.Row():
user_input = gr.Textbox(label="Your Message")
location_input = gr.Textbox(label="Your Location")
query_input = gr.Textbox(label="Search Query")
submit_button = gr.Button("Submit")
chatbot_output = gr.Chatbot(label="Chat History", type="messages")
sentiment_output = gr.Textbox(label="Sentiment Detected")
emotion_output = gr.Textbox(label="Emotion Detected")
suggestions_output = gr.DataFrame(label="Suggestions", headers=["Title", "Subject", "Link"])
professionals_output = gr.Textbox(label="Nearby Professionals", lines=5)
map_output = gr.HTML(label="Map of Nearby Professionals")
submit_button.click(
app_function,
inputs=[user_input, location_input, query_input, chatbot_output],
outputs=[
chatbot_output, sentiment_output, emotion_output,
suggestions_output, professionals_output, map_output
],
)
demo.launch()