File size: 8,098 Bytes
f0734be
864d91e
2ae19d7
 
eefcaa7
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
fa97be4
274d1f4
 
eefcaa7
 
4e61093
6858546
dacc7c0
4e61093
334ba26
 
4e61093
494aa89
6858546
334ba26
494aa89
 
0e313c1
4e61093
 
274d1f4
 
 
 
6858546
 
c69efb6
4e61093
9e5813b
 
 
4e61093
9e5813b
 
 
4e61093
 
 
 
936af04
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
4e61093
274d1f4
4184e5e
 
6858546
 
4e61093
6858546
 
 
4184e5e
 
6858546
9508310
 
6858546
936af04
4e61093
f0734be
274d1f4
 
 
6858546
 
 
274d1f4
4e61093
274d1f4
 
 
6858546
 
 
 
 
 
 
 
 
 
274d1f4
4e61093
864d91e
4e61093
6858546
9e5813b
 
 
 
 
6858546
9e5813b
4e61093
9e5813b
 
 
 
4e61093
9e5813b
 
4e61093
37c8a73
4e61093
6858546
4e61093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6858546
 
 
 
 
4e61093
 
4568d77
4e61093
4568d77
4e61093
6858546
4e61093
4568d77
4e61093
 
 
 
6858546
9e5813b
4e61093
9e5813b
 
4e61093
 
6858546
4e61093
6858546
 
4e61093
 
 
 
6858546
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import gradio as gr
import nltk
import numpy as np
import tensorflow as tf
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch

# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

# Ensure necessary NLTK resources are downloaded
nltk.download("punkt")

# Initialize stemmer
stemmer = LancasterStemmer()

# Load intents.json and training data for chatbot
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Sentiment Analysis Model (Hugging Face)
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

# Emotion Detection Model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))

# Process Text Input for Chatbot
def bag_of_words(s, words):
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chatbot Functionality
def chatbot(message, history):
    history = history or []
    try:
        results = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(results)]
        response = "I'm not sure how to respond to that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {str(e)} πŸ’₯"
    history.append({"role": "user", "content": message})
    history.append({"role": "assistant", "content": response})
    return history, response

# Detect Sentiment
def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return sentiment_map[sentiment_class]

# Detect Emotion
def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"]
    emotion_map = {
        "joy": "😊 Joy",
        "anger": "😠 Anger",
        "sadness": "😒 Sadness",
        "fear": "😨 Fear",
        "surprise": "😲 Surprise",
        "neutral": "😐 Neutral",
    }
    return emotion_map.get(emotion, "Unknown Emotion πŸ€”")

# Generate Suggestions for Detected Emotion
def generate_suggestions(emotion):
    resources = {
        "😊 Joy": [
            ["Relaxation Techniques", "Relaxation", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
            ["Dealing with Stress", "Stress Management", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Emotional Wellness Toolkit", "Wellness", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Relaxation Videos", "Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
        ],
        "😒 Sadness": [
            ["Emotional Wellness Toolkit", "Wellness", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Dealing with Anxiety", "Anxiety Management", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Relaxation Videos", "Video", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
        ],
        "😨 Fear": [
            ["Mindfulness Practices", "Mindfulness", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
            ["Coping with Anxiety", "Anxiety Management", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Emotional Wellness Toolkit", "Wellness", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Relaxation Videos", "Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
        ]
    }
    return resources.get(emotion.split(" ")[1], [["No specific suggestions available", "", ""]])

# Search Professionals and Generate Map
def get_health_professionals_and_map(location, query):
    try:
        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(
                location=(lat, lng), radius=10000, type="doctor", keyword=query
            )["results"]
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            professionals = []
            for place in places_result:
                professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
                lat, lng = place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]
                folium.Marker([lat, lng], popup=place["name"]).add_to(map_)
            return professionals, map_._repr_html_()
        return ["No professionals found"], ""
    except Exception as e:
        return [f"Error: {e}"], ""

# Gradio App Function
def app_function(message, location, query, history):
    chatbot_history, _ = chatbot(message, history)
    sentiment = analyze_sentiment(message)
    emotion = detect_emotion(message)
    suggestions = generate_suggestions(emotion)
    professionals_info, map_html = get_health_professionals_and_map(location, query)
    return chatbot_history, sentiment, emotion, suggestions, professionals_info, map_html

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# 🌟 Well-Being Companion")
    gr.Markdown("Empowering your mental health journey πŸ’š")
    
    with gr.Row():
        user_input = gr.Textbox(label="Your Message")
        location_input = gr.Textbox(label="Your Location")
        query_input = gr.Textbox(label="Search Query")
        submit_button = gr.Button("Submit")

    chatbot_output = gr.Chatbot(label="Chat History", type="messages")
    sentiment_output = gr.Textbox(label="Sentiment Detected")
    emotion_output = gr.Textbox(label="Emotion Detected")
    suggestions_output = gr.DataFrame(label="Suggestions", headers=["Title", "Subject", "Link"])
    professionals_output = gr.Textbox(label="Nearby Professionals", lines=5)
    map_output = gr.HTML(label="Map of Nearby Professionals")

    submit_button.click(
        app_function,
        inputs=[user_input, location_input, query_input, chatbot_output],
        outputs=[
            chatbot_output, sentiment_output, emotion_output,
            suggestions_output, professionals_output, map_output
        ],
    )

demo.launch()