Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,173 +9,217 @@ import pickle
|
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
from nltk.stem.lancaster import LancasterStemmer
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
|
|
|
|
12 |
import pandas as pd
|
13 |
import torch
|
14 |
|
15 |
-
# Disable
|
16 |
-
os.environ[
|
17 |
|
18 |
-
#
|
19 |
-
nltk.download(
|
20 |
|
21 |
-
# Initialize
|
22 |
stemmer = LancasterStemmer()
|
23 |
|
24 |
-
# Load intents.json for
|
25 |
with open("intents.json") as file:
|
26 |
-
|
27 |
|
28 |
-
# Load
|
29 |
with open("data.pickle", "rb") as f:
|
30 |
words, labels, training, output = pickle.load(f)
|
31 |
|
32 |
-
# Build
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
net = tflearn.regression(net)
|
39 |
-
model = tflearn.DNN(net)
|
40 |
-
model.load("MentalHealthChatBotmodel.tflearn")
|
41 |
-
return model
|
42 |
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
#
|
46 |
def bag_of_words(s, words):
|
47 |
bag = [0 for _ in range(len(words))]
|
48 |
s_words = word_tokenize(s)
|
49 |
-
s_words = [stemmer.stem(word.lower()) for word in s_words if word.
|
50 |
for se in s_words:
|
51 |
for i, w in enumerate(words):
|
52 |
if w == se:
|
53 |
bag[i] = 1
|
54 |
return np.array(bag)
|
55 |
|
56 |
-
#
|
57 |
-
def
|
58 |
history = history or []
|
|
|
59 |
try:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
break
|
|
|
|
|
68 |
except Exception as e:
|
69 |
-
response = f"
|
70 |
-
|
|
|
71 |
history.append({"role": "user", "content": message})
|
72 |
history.append({"role": "assistant", "content": response})
|
73 |
-
|
74 |
-
|
75 |
-
# Emotion Detection
|
76 |
-
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
77 |
-
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
78 |
-
|
79 |
-
def detect_emotion(user_input):
|
80 |
-
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
|
81 |
-
try:
|
82 |
-
result = pipe(user_input)
|
83 |
-
emotion = result[0]["label"]
|
84 |
-
emotion_map = {
|
85 |
-
"joy": "π Joy",
|
86 |
-
"anger": "π Anger",
|
87 |
-
"sadness": "π’ Sadness",
|
88 |
-
"fear": "π¨ Fear",
|
89 |
-
"surprise": "π² Surprise",
|
90 |
-
"neutral": "π Neutral",
|
91 |
-
}
|
92 |
-
return emotion_map.get(emotion, "Unknown Emotion π€")
|
93 |
-
except Exception as e:
|
94 |
-
return f"Error detecting emotion: {str(e)} π₯"
|
95 |
|
96 |
-
# Sentiment Analysis
|
97 |
-
|
98 |
-
|
99 |
|
100 |
def analyze_sentiment(user_input):
|
101 |
-
inputs =
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
110 |
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def generate_suggestions(emotion):
|
113 |
-
|
114 |
-
|
115 |
-
{"Title": "
|
116 |
-
{"Title": "
|
117 |
-
|
118 |
-
|
119 |
-
{"Title": "Talk to a Professional π¬", "Link": "https://www.betterhelp.com/"},
|
120 |
-
{"Title": "Mental Health Toolkit π οΈ", "Link": "https://www.psychologytoday.com/"},
|
121 |
],
|
122 |
-
|
123 |
-
{"Title": "
|
124 |
-
{"Title": "Stress
|
|
|
|
|
125 |
],
|
|
|
126 |
}
|
127 |
-
return suggestions_map.get(emotion, [{"Title": "General Wellness Resources π", "Link": "https://www.helpguide.org/wellness"}])
|
128 |
-
|
129 |
-
# Nearby Professionals Function
|
130 |
-
def search_nearby_professionals(location, query):
|
131 |
-
"""Returns a list of professionals as a list of lists for compatibility with DataFrame."""
|
132 |
-
if location and query:
|
133 |
-
results = [
|
134 |
-
{"Name": "Wellness Center", "Address": "123 Wellness Way"},
|
135 |
-
{"Name": "Mental Health Clinic", "Address": "456 Recovery Road"},
|
136 |
-
{"Name": "Therapy Hub", "Address": "789 Peace Avenue"},
|
137 |
-
]
|
138 |
-
return [[item["Name"], item["Address"]] for item in results]
|
139 |
-
return []
|
140 |
-
|
141 |
-
# Main App Logic
|
142 |
-
def well_being_app(user_input, location, query, history):
|
143 |
-
history, _ = chatbot_response(user_input, history)
|
144 |
-
emotion = detect_emotion(user_input)
|
145 |
-
sentiment = analyze_sentiment(user_input)
|
146 |
-
emotion_name = emotion.split(": ")[-1]
|
147 |
-
suggestions = generate_suggestions(emotion_name)
|
148 |
-
suggestions_df = pd.DataFrame(suggestions)
|
149 |
-
professionals = search_nearby_professionals(location, query)
|
150 |
-
return history, sentiment, emotion, suggestions_df, professionals
|
151 |
-
|
152 |
-
# Gradio Interface
|
153 |
-
with gr.Blocks() as interface:
|
154 |
-
gr.Markdown("## π± Well-being Companion")
|
155 |
-
gr.Markdown("> Empowering Your Mental Health! π")
|
156 |
-
|
157 |
-
with gr.Row():
|
158 |
-
user_input = gr.Textbox(label="Your Message")
|
159 |
-
location_input = gr.Textbox(label="Location")
|
160 |
-
query_input = gr.Textbox(label="Search Query")
|
161 |
-
submit_button = gr.Button("Submit")
|
162 |
-
|
163 |
-
chatbot_output = gr.Chatbot(label="Chatbot Interaction", type="messages", value=[])
|
164 |
-
sentiment_output = gr.Textbox(label="Sentiment Analysis")
|
165 |
-
emotion_output = gr.Textbox(label="Emotion Detected")
|
166 |
-
suggestions_output = gr.DataFrame(label="Suggestions", value=[], headers=["Title", "Link"])
|
167 |
-
nearby_professionals_output = gr.DataFrame(label="Nearby Professionals", headers=["Name", "Address"])
|
168 |
-
|
169 |
-
submit_button.click(
|
170 |
-
well_being_app,
|
171 |
-
inputs=[user_input, location_input, query_input, chatbot_output],
|
172 |
-
outputs=[
|
173 |
-
chatbot_output,
|
174 |
-
sentiment_output,
|
175 |
-
emotion_output,
|
176 |
-
suggestions_output,
|
177 |
-
nearby_professionals_output,
|
178 |
-
],
|
179 |
-
)
|
180 |
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
from nltk.stem.lancaster import LancasterStemmer
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
+
import googlemaps
|
13 |
+
import folium
|
14 |
import pandas as pd
|
15 |
import torch
|
16 |
|
17 |
+
# Disable GPU usage for TensorFlow
|
18 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
19 |
|
20 |
+
# Ensure necessary NLTK resources are downloaded
|
21 |
+
nltk.download('punkt')
|
22 |
|
23 |
+
# Initialize the stemmer
|
24 |
stemmer = LancasterStemmer()
|
25 |
|
26 |
+
# Load intents.json for Well-Being Chatbot
|
27 |
with open("intents.json") as file:
|
28 |
+
data = json.load(file)
|
29 |
|
30 |
+
# Load preprocessed data for Well-Being Chatbot
|
31 |
with open("data.pickle", "rb") as f:
|
32 |
words, labels, training, output = pickle.load(f)
|
33 |
|
34 |
+
# Build the model structure for Well-Being Chatbot
|
35 |
+
net = tflearn.input_data(shape=[None, len(training[0])])
|
36 |
+
net = tflearn.fully_connected(net, 8)
|
37 |
+
net = tflearn.fully_connected(net, 8)
|
38 |
+
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
|
39 |
+
net = tflearn.regression(net)
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Load the trained model
|
42 |
+
model = tflearn.DNN(net)
|
43 |
+
model.load("MentalHealthChatBotmodel.tflearn")
|
44 |
|
45 |
+
# Function to process user input into a bag-of-words format for Chatbot
|
46 |
def bag_of_words(s, words):
|
47 |
bag = [0 for _ in range(len(words))]
|
48 |
s_words = word_tokenize(s)
|
49 |
+
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
|
50 |
for se in s_words:
|
51 |
for i, w in enumerate(words):
|
52 |
if w == se:
|
53 |
bag[i] = 1
|
54 |
return np.array(bag)
|
55 |
|
56 |
+
# Chat function for Well-Being Chatbot
|
57 |
+
def chatbot(message, history):
|
58 |
history = history or []
|
59 |
+
message = message.lower()
|
60 |
try:
|
61 |
+
# Predict the tag
|
62 |
+
results = model.predict([bag_of_words(message, words)])
|
63 |
+
results_index = np.argmax(results)
|
64 |
+
tag = labels[results_index]
|
65 |
+
|
66 |
+
# Match tag with intent and choose a random response
|
67 |
+
for tg in data["intents"]:
|
68 |
+
if tg['tag'] == tag:
|
69 |
+
responses = tg['responses']
|
70 |
+
response = random.choice(responses)
|
71 |
break
|
72 |
+
else:
|
73 |
+
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
|
74 |
except Exception as e:
|
75 |
+
response = f"An error occurred: {str(e)}"
|
76 |
+
|
77 |
+
# Convert the new message and response to the 'messages' format
|
78 |
history.append({"role": "user", "content": message})
|
79 |
history.append({"role": "assistant", "content": response})
|
80 |
+
|
81 |
+
return history, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Sentiment Analysis using Hugging Face model
|
84 |
+
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
85 |
+
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
86 |
|
87 |
def analyze_sentiment(user_input):
|
88 |
+
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
89 |
+
with torch.no_grad():
|
90 |
+
outputs = model_sentiment(**inputs)
|
91 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
92 |
+
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] # Assuming 3 classes
|
93 |
+
return f"Predicted Sentiment: {sentiment}"
|
94 |
+
|
95 |
+
# Emotion Detection using Hugging Face model
|
96 |
+
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
97 |
+
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
98 |
|
99 |
+
def detect_emotion(user_input):
|
100 |
+
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
101 |
+
result = pipe(user_input)
|
102 |
+
emotion = result[0]['label']
|
103 |
+
return f"Emotion Detected: {emotion}"
|
104 |
+
|
105 |
+
# Initialize Google Maps API client securely
|
106 |
+
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
107 |
+
|
108 |
+
# Function to search for health professionals
|
109 |
+
def search_health_professionals(query, location, radius=10000):
|
110 |
+
places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
|
111 |
+
return places_result.get('results', [])
|
112 |
+
|
113 |
+
# Function to get directions and display on Gradio UI
|
114 |
+
def get_health_professionals_and_map(current_location, health_professional_query):
|
115 |
+
location = gmaps.geocode(current_location)
|
116 |
+
if location:
|
117 |
+
lat = location[0]["geometry"]["location"]["lat"]
|
118 |
+
lng = location[0]["geometry"]["location"]["lng"]
|
119 |
+
location = (lat, lng)
|
120 |
+
|
121 |
+
professionals = search_health_professionals(health_professional_query, location)
|
122 |
+
|
123 |
+
# Generate map
|
124 |
+
map_center = location
|
125 |
+
m = folium.Map(location=map_center, zoom_start=13)
|
126 |
+
|
127 |
+
# Add markers to the map
|
128 |
+
for place in professionals:
|
129 |
+
folium.Marker(
|
130 |
+
location=[place['geometry']['location']['lat'], place['geometry']['location']['lng']],
|
131 |
+
popup=place['name']
|
132 |
+
).add_to(m)
|
133 |
+
|
134 |
+
# Convert map to HTML for Gradio display
|
135 |
+
map_html = m._repr_html_()
|
136 |
+
|
137 |
+
# Route information
|
138 |
+
route_info = "\n".join([f"{place['name']} - {place['vicinity']}" for place in professionals])
|
139 |
+
|
140 |
+
return route_info, map_html
|
141 |
+
else:
|
142 |
+
return "Unable to find location.", ""
|
143 |
+
|
144 |
+
# Function to generate suggestions based on the detected emotion
|
145 |
def generate_suggestions(emotion):
|
146 |
+
suggestions = {
|
147 |
+
'joy': [
|
148 |
+
{"Title": "Relaxation Techniques πΏ", "Subject": "Relaxation", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'},
|
149 |
+
{"Title": "Dealing with Stress π", "Subject": "Stress Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'},
|
150 |
+
{"Title": "Emotional Wellness Toolkit πͺ", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
|
151 |
+
{"Title": "Relaxation Video π₯", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'}
|
|
|
|
|
152 |
],
|
153 |
+
'anger': [
|
154 |
+
{"Title": "Emotional Wellness Toolkit π‘", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
|
155 |
+
{"Title": "Stress Management Tips π§", "Subject": "Stress Management", "Link": '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Harvard Health: Stress Management</a>'},
|
156 |
+
{"Title": "Dealing with Anger π₯", "Subject": "Anger Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anger</a>'},
|
157 |
+
{"Title": "Relaxation Video π¬", "Subject": "Video", "Link": '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch Video</a>'}
|
158 |
],
|
159 |
+
# Add more suggestions for other emotions as required...
|
160 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
return suggestions.get(emotion, [])
|
163 |
+
|
164 |
+
# Gradio interface
|
165 |
+
def gradio_app(message, location, health_query, submit_button, history, state):
|
166 |
+
if submit_button:
|
167 |
+
# Chatbot interaction
|
168 |
+
history, _ = chatbot(message, history)
|
169 |
+
|
170 |
+
# Sentiment analysis
|
171 |
+
sentiment_response = analyze_sentiment(message)
|
172 |
+
|
173 |
+
# Emotion detection
|
174 |
+
emotion_response = detect_emotion(message)
|
175 |
+
|
176 |
+
# Health professional search and map display
|
177 |
+
route_info, map_html = get_health_professionals_and_map(location, health_query)
|
178 |
+
|
179 |
+
# Generate suggestions based on the detected emotion
|
180 |
+
suggestions = generate_suggestions(emotion_response.split(': ')[1])
|
181 |
+
|
182 |
+
# Create a DataFrame for displaying suggestions
|
183 |
+
suggestions_df = pd.DataFrame(suggestions)
|
184 |
+
|
185 |
+
return history, sentiment_response, emotion_response, route_info, map_html, gr.DataFrame(suggestions_df, headers=["Title", "Subject", "Link"]), state
|
186 |
+
else:
|
187 |
+
return history, "", "", "", "", gr.DataFrame([], headers=["Title", "Subject", "Link"]), state
|
188 |
+
|
189 |
+
# Gradio UI components
|
190 |
+
message_input = gr.Textbox(lines=1, label="π¬ Message")
|
191 |
+
location_input = gr.Textbox(value="Honolulu, HI", label="π Current Location")
|
192 |
+
health_query_input = gr.Textbox(value="doctor", label="π©Ί Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
|
193 |
+
submit_button = gr.Button("π Submit")
|
194 |
+
|
195 |
+
# Updated chat history component with 'messages' type
|
196 |
+
chat_history = gr.Chatbot(label="Well-Being Chat History", type='messages')
|
197 |
+
|
198 |
+
# Outputs
|
199 |
+
sentiment_output = gr.Textbox(label="π¬ Sentiment Analysis Result")
|
200 |
+
emotion_output = gr.Textbox(label="π Emotion Detection Result")
|
201 |
+
route_info_output = gr.Textbox(label="π©Ί Health Professionals Information")
|
202 |
+
map_output = gr.HTML(label="πΊοΈ Map with Health Professionals")
|
203 |
+
suggestions_output = gr.DataFrame(label="π Well-Being Suggestions", headers=["Title", "Subject", "Link"])
|
204 |
+
|
205 |
+
# Create Gradio interface with custom CSS for gradient background
|
206 |
+
css = """
|
207 |
+
body {
|
208 |
+
background: linear-gradient(to right, #6ab04c, #34e89e);
|
209 |
+
font-family: Arial, sans-serif;
|
210 |
+
}
|
211 |
+
"""
|
212 |
+
|
213 |
+
# Create Gradio interface
|
214 |
+
iface = gr.Interface(
|
215 |
+
fn=gradio_app,
|
216 |
+
inputs=[message_input, location_input, health_query_input, submit_button, gr.State()],
|
217 |
+
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, gr.State()],
|
218 |
+
allow_flagging="never",
|
219 |
+
live=False,
|
220 |
+
title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search",
|
221 |
+
css=css
|
222 |
+
)
|
223 |
+
|
224 |
+
# Launch the Gradio interface
|
225 |
+
iface.launch()
|