Testing / app.py
DreamStream-1's picture
Update app.py
6858546 verified
raw
history blame
7.49 kB
import os
import gradio as gr
import nltk
import numpy as np
import tensorflow as tf
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
# Suppress TensorFlow GPU warnings & logs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Download NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load intents.json for the chatbot
with open("intents.json") as file:
intents_data = json.load(file)
# Load preprocessed data for Well-Being Chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build TFlearn Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])], dtype=tf.float32)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load and initialize the trained model
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Response Function
def chatbot(message, history):
history = history or []
message = message.lower()
try:
results = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(results)]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)} πŸ’₯"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, response
# Sentiment Analysis Function
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment_class]
# Emotion Detection Function
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"]
emotion_map = {
"joy": "😊 Joy",
"anger": "😠 Anger",
"sadness": "😒 Sadness",
"fear": "😨 Fear",
"surprise": "😲 Surprise",
"neutral": "😐 Neutral",
}
return emotion_map.get(emotion, "Unknown Emotion πŸ€”")
# Health Professionals Search
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
def get_health_professionals_and_map(location, query):
"""Search for health professionals and generate a map."""
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(
location=(lat, lng), radius=10000, type="doctor", keyword=query
).get("results", [])
# Create map
m = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
folium.Marker(
location=[
place["geometry"]["location"]["lat"],
place["geometry"]["location"]["lng"],
],
popup=place["name"],
).add_to(m)
map_html = m._repr_html_()
professionals_info = [
f"{place['name']} - {place.get('vicinity', 'No address available')}"
for place in places_result
]
return "\n".join(professionals_info), map_html
return "Unable to find location", ""
except Exception as e:
return f"Error: {e}", ""
# Suggestions Based on Emotion
def generate_suggestions(emotion):
suggestions = {
"😊 Joy": [
{"Title": "Meditation 🧘", "Subject": "Relaxation", "Link": "https://example.com/meditation"},
{"Title": "Learn a skill πŸš€", "Subject": "Growth", "Link": "https://example.com/skills"},
],
"😒 Sadness": [
{"Title": "Therapist Help πŸ’¬", "Subject": "Support", "Link": "https://example.com/therapist"},
{"Title": "Stress Management 🌿", "Subject": "Wellness", "Link": "https://example.com/stress"},
],
}
return suggestions.get(emotion.split(" ")[1].lower(), [])
# Main Gradio App Function
def app_function(message, location, query, history):
chatbot_history, _ = chatbot(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
suggestions = generate_suggestions(emotion)
places_info, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, map_html, places_info
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# 🌟 Well-being Companion")
gr.Markdown("Empowering your mental health journey πŸ’š")
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Type your message...", lines=2)
location_input = gr.Textbox(label="Your Location", placeholder="Enter location...", lines=2)
query_input = gr.Textbox(label="Search Query", placeholder="Enter query (e.g., therapist)...", lines=1)
submit_btn = gr.Button("Submit")
with gr.Row():
chatbot_output = gr.Chatbot(label="Chat History", type="messages")
with gr.Row():
sentiment_output = gr.Textbox(label="Sentiment Analysis")
emotion_output = gr.Textbox(label="Emotion Detected")
with gr.Row():
suggestions_output = gr.DataFrame(label="Suggestions", headers=["Title", "Subject", "Link"])
with gr.Row():
map_display = gr.HTML(label="Map of Nearby Professionals")
health_info_output = gr.Textbox(label="Health Professionals Info", lines=5)
# Button interaction
submit_btn.click(
app_function,
inputs=[user_input, location_input, query_input, chatbot_output],
outputs=[
chatbot_output,
sentiment_output,
emotion_output,
suggestions_output,
map_display,
health_info_output,
],
)
demo.launch()