Spaces:
Sleeping
Sleeping
File size: 7,485 Bytes
f0734be 864d91e 2ae19d7 eefcaa7 881aad3 4184e5e 274d1f4 f0734be fa97be4 274d1f4 37d6095 6858546 eefcaa7 6858546 dacc7c0 6858546 334ba26 6858546 494aa89 6858546 334ba26 274d1f4 494aa89 0e313c1 6858546 274d1f4 c69efb6 6858546 c69efb6 6858546 936af04 4184e5e 6858546 936af04 4525308 6858546 274d1f4 4184e5e 274d1f4 4184e5e 6858546 4184e5e 6858546 9508310 6858546 936af04 6858546 274d1f4 936af04 f0734be 274d1f4 6858546 274d1f4 6858546 274d1f4 2f693ca 274d1f4 6858546 274d1f4 6858546 274d1f4 6858546 864d91e 274d1f4 6858546 f0734be 6858546 f0734be 37c8a73 6858546 4568d77 6858546 4568d77 6858546 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import gradio as gr
import nltk
import numpy as np
import tensorflow as tf
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
# Suppress TensorFlow GPU warnings & logs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Download NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load intents.json for the chatbot
with open("intents.json") as file:
intents_data = json.load(file)
# Load preprocessed data for Well-Being Chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build TFlearn Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])], dtype=tf.float32)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load and initialize the trained model
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Response Function
def chatbot(message, history):
history = history or []
message = message.lower()
try:
results = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(results)]
response = "I'm not sure how to respond to that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)} π₯"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, response
# Sentiment Analysis Function
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment_class]
# Emotion Detection Function
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"]
emotion_map = {
"joy": "π Joy",
"anger": "π Anger",
"sadness": "π’ Sadness",
"fear": "π¨ Fear",
"surprise": "π² Surprise",
"neutral": "π Neutral",
}
return emotion_map.get(emotion, "Unknown Emotion π€")
# Health Professionals Search
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
def get_health_professionals_and_map(location, query):
"""Search for health professionals and generate a map."""
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(
location=(lat, lng), radius=10000, type="doctor", keyword=query
).get("results", [])
# Create map
m = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
folium.Marker(
location=[
place["geometry"]["location"]["lat"],
place["geometry"]["location"]["lng"],
],
popup=place["name"],
).add_to(m)
map_html = m._repr_html_()
professionals_info = [
f"{place['name']} - {place.get('vicinity', 'No address available')}"
for place in places_result
]
return "\n".join(professionals_info), map_html
return "Unable to find location", ""
except Exception as e:
return f"Error: {e}", ""
# Suggestions Based on Emotion
def generate_suggestions(emotion):
suggestions = {
"π Joy": [
{"Title": "Meditation π§", "Subject": "Relaxation", "Link": "https://example.com/meditation"},
{"Title": "Learn a skill π", "Subject": "Growth", "Link": "https://example.com/skills"},
],
"π’ Sadness": [
{"Title": "Therapist Help π¬", "Subject": "Support", "Link": "https://example.com/therapist"},
{"Title": "Stress Management πΏ", "Subject": "Wellness", "Link": "https://example.com/stress"},
],
}
return suggestions.get(emotion.split(" ")[1].lower(), [])
# Main Gradio App Function
def app_function(message, location, query, history):
chatbot_history, _ = chatbot(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
suggestions = generate_suggestions(emotion)
places_info, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, map_html, places_info
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# π Well-being Companion")
gr.Markdown("Empowering your mental health journey π")
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Type your message...", lines=2)
location_input = gr.Textbox(label="Your Location", placeholder="Enter location...", lines=2)
query_input = gr.Textbox(label="Search Query", placeholder="Enter query (e.g., therapist)...", lines=1)
submit_btn = gr.Button("Submit")
with gr.Row():
chatbot_output = gr.Chatbot(label="Chat History", type="messages")
with gr.Row():
sentiment_output = gr.Textbox(label="Sentiment Analysis")
emotion_output = gr.Textbox(label="Emotion Detected")
with gr.Row():
suggestions_output = gr.DataFrame(label="Suggestions", headers=["Title", "Subject", "Link"])
with gr.Row():
map_display = gr.HTML(label="Map of Nearby Professionals")
health_info_output = gr.Textbox(label="Health Professionals Info", lines=5)
# Button interaction
submit_btn.click(
app_function,
inputs=[user_input, location_input, query_input, chatbot_output],
outputs=[
chatbot_output,
sentiment_output,
emotion_output,
suggestions_output,
map_display,
health_info_output,
],
)
demo.launch() |