DreamStream-1 commited on
Commit
37d6095
·
verified ·
1 Parent(s): 864d91e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -6
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  import nltk
3
  import numpy as np
@@ -11,10 +12,12 @@ from nltk.stem.lancaster import LancasterStemmer
11
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
12
  import googlemaps
13
  import folium
14
- import os
15
  import pandas as pd
16
  import torch
17
 
 
 
 
18
  # Ensure necessary NLTK resources are downloaded
19
  nltk.download('punkt')
20
 
@@ -206,22 +209,24 @@ def gradio_app(message, location, health_query, submit_button, history, state):
206
  message_input = gr.Textbox(lines=1, label="Message")
207
  location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
208
  health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
209
- submit_button = gr.Button("Submit") # Submit button for triggering the app function
210
 
211
- chat_history = gr.Chatbot(label="Well-Being Chat History") # Renamed chatbot label
 
212
 
213
  # Outputs
214
  sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
215
  emotion_output = gr.Textbox(label="Emotion Detection Result")
216
  route_info_output = gr.Textbox(label="Health Professionals Information")
217
  map_output = gr.HTML(label="Map with Health Professionals")
218
- suggestions_output = gr.DataFrame(label="Well-Being Suggestions", headers=["Title", "Subject", "Link"]) # Renamed suggestions output
219
 
220
  # Create Gradio interface
 
221
  iface = gr.Interface(
222
  fn=gradio_app,
223
- inputs=[message_input, location_input, health_query_input, submit_button, gr.State(), gr.State()], # Updated inputs to include submit button
224
- outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, gr.State()], # Outputs remain unchanged
225
  allow_flagging="never",
226
  live=True,
227
  title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search"
 
1
+ import os
2
  import gradio as gr
3
  import nltk
4
  import numpy as np
 
12
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
13
  import googlemaps
14
  import folium
 
15
  import pandas as pd
16
  import torch
17
 
18
+ # Disable GPU usage for TensorFlow
19
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
20
+
21
  # Ensure necessary NLTK resources are downloaded
22
  nltk.download('punkt')
23
 
 
209
  message_input = gr.Textbox(lines=1, label="Message")
210
  location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
211
  health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
212
+ submit_button = gr.Button("Submit") # Submit button
213
 
214
+ # Updated chat history component with 'messages' type
215
+ chat_history = gr.Chatbot(label="Well-Being Chat History", type='messages')
216
 
217
  # Outputs
218
  sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
219
  emotion_output = gr.Textbox(label="Emotion Detection Result")
220
  route_info_output = gr.Textbox(label="Health Professionals Information")
221
  map_output = gr.HTML(label="Map with Health Professionals")
222
+ suggestions_output = gr.DataFrame(label="Well-Being Suggestions", headers=["Title", "Subject", "Link"])
223
 
224
  # Create Gradio interface
225
+ # Ensure there is exactly one state input and one state output
226
  iface = gr.Interface(
227
  fn=gradio_app,
228
+ inputs=[message_input, location_input, health_query_input, submit_button, gr.State()], # Updated to include only one state input
229
+ outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, gr.State()], # Updated to include only one state output
230
  allow_flagging="never",
231
  live=True,
232
  title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search"