Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import nltk
|
3 |
import numpy as np
|
@@ -11,10 +12,12 @@ from nltk.stem.lancaster import LancasterStemmer
|
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
-
import os
|
15 |
import pandas as pd
|
16 |
import torch
|
17 |
|
|
|
|
|
|
|
18 |
# Ensure necessary NLTK resources are downloaded
|
19 |
nltk.download('punkt')
|
20 |
|
@@ -206,22 +209,24 @@ def gradio_app(message, location, health_query, submit_button, history, state):
|
|
206 |
message_input = gr.Textbox(lines=1, label="Message")
|
207 |
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
|
208 |
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
|
209 |
-
submit_button = gr.Button("Submit") # Submit button
|
210 |
|
211 |
-
|
|
|
212 |
|
213 |
# Outputs
|
214 |
sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
|
215 |
emotion_output = gr.Textbox(label="Emotion Detection Result")
|
216 |
route_info_output = gr.Textbox(label="Health Professionals Information")
|
217 |
map_output = gr.HTML(label="Map with Health Professionals")
|
218 |
-
suggestions_output = gr.DataFrame(label="Well-Being Suggestions", headers=["Title", "Subject", "Link"])
|
219 |
|
220 |
# Create Gradio interface
|
|
|
221 |
iface = gr.Interface(
|
222 |
fn=gradio_app,
|
223 |
-
inputs=[message_input, location_input, health_query_input, submit_button, gr.State()
|
224 |
-
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, gr.State()], #
|
225 |
allow_flagging="never",
|
226 |
live=True,
|
227 |
title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search"
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import nltk
|
4 |
import numpy as np
|
|
|
12 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
13 |
import googlemaps
|
14 |
import folium
|
|
|
15 |
import pandas as pd
|
16 |
import torch
|
17 |
|
18 |
+
# Disable GPU usage for TensorFlow
|
19 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
20 |
+
|
21 |
# Ensure necessary NLTK resources are downloaded
|
22 |
nltk.download('punkt')
|
23 |
|
|
|
209 |
message_input = gr.Textbox(lines=1, label="Message")
|
210 |
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
|
211 |
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
|
212 |
+
submit_button = gr.Button("Submit") # Submit button
|
213 |
|
214 |
+
# Updated chat history component with 'messages' type
|
215 |
+
chat_history = gr.Chatbot(label="Well-Being Chat History", type='messages')
|
216 |
|
217 |
# Outputs
|
218 |
sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
|
219 |
emotion_output = gr.Textbox(label="Emotion Detection Result")
|
220 |
route_info_output = gr.Textbox(label="Health Professionals Information")
|
221 |
map_output = gr.HTML(label="Map with Health Professionals")
|
222 |
+
suggestions_output = gr.DataFrame(label="Well-Being Suggestions", headers=["Title", "Subject", "Link"])
|
223 |
|
224 |
# Create Gradio interface
|
225 |
+
# Ensure there is exactly one state input and one state output
|
226 |
iface = gr.Interface(
|
227 |
fn=gradio_app,
|
228 |
+
inputs=[message_input, location_input, health_query_input, submit_button, gr.State()], # Updated to include only one state input
|
229 |
+
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, gr.State()], # Updated to include only one state output
|
230 |
allow_flagging="never",
|
231 |
live=True,
|
232 |
title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search"
|