Testing / app.py
DreamStream-1's picture
Update app.py
756dc7b verified
raw
history blame
10 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import pandas as pd
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json for Well-Being Chatbot
with open("intents.json") as file:
data = json.load(file)
# Load preprocessed data for Well-Being Chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the model structure for Well-Being Chatbot
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
# Function to process user input into a bag-of-words format for Chatbot
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function for Well-Being Chatbot
def chatbot(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
# Convert the new message and response to the 'messages' format
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, history
# Sentiment Analysis using Hugging Face model
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] # Assuming 3 classes
return f"Predicted Sentiment: {sentiment}"
# Emotion Detection using Hugging Face model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
return f"Emotion Detected: {emotion}"
# Initialize Google Maps API client securely
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Function to search for health professionals
def search_health_professionals(query, location, radius=10000):
places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
return places_result.get('results', [])
# Function to get directions and display on Gradio UI
def get_health_professionals_and_map(current_location, health_professional_query):
location = gmaps.geocode(current_location)
if location:
lat = location[0]["geometry"]["location"]["lat"]
lng = location[0]["geometry"]["location"]["lng"]
location = (lat, lng)
professionals = search_health_professionals(health_professional_query, location)
# Generate map
map_center = location
m = folium.Map(location=map_center, zoom_start=13)
# Add markers to the map
for place in professionals:
folium.Marker(
location=[place['geometry']['location']['lat'], place['geometry']['location']['lng']],
popup=place['name']
).add_to(m)
# Convert map to HTML for Gradio display
map_html = m._repr_html_()
# Route information
route_info = "\n".join([f"{place['name']} - {place['vicinity']}" for place in professionals])
return route_info, map_html
else:
return "Unable to find location.", ""
# Function to generate suggestions based on the detected emotion
def generate_suggestions(emotion):
suggestions = {
'joy': [
{"Title": "Relaxation Techniques 🌿", "Subject": "Relaxation", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'},
{"Title": "Dealing with Stress πŸ’†", "Subject": "Stress Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'},
{"Title": "Emotional Wellness Toolkit πŸ’ͺ", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Relaxation Video πŸŽ₯", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'}
],
'anger': [
{"Title": "Emotional Wellness Toolkit πŸ’‘", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Stress Management Tips 🧘", "Subject": "Stress Management", "Link": '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Harvard Health: Stress Management</a>'},
{"Title": "Dealing with Anger πŸ’₯", "Subject": "Anger Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anger</a>'},
{"Title": "Relaxation Video 🎬", "Subject": "Video", "Link": '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch Video</a>'}
],
# Add more suggestions for other emotions as required...
}
return suggestions.get(emotion, [])
# Custom CSS for green gradient background and button
custom_css = """
/* Gradient Background */
body {
background: linear-gradient(135deg, #00b894, #1dd1a1);
font-family: Arial, sans-serif;
color: white;
box-shadow: inset 0 0 50px rgba(0, 0, 0, 0.1), 0 0 30px rgba(0, 0, 0, 0.1);
}
/* Green gradient submit button */
.gradio-button {
background: linear-gradient(45deg, #00b894, #1dd1a1);
border: none;
color: white;
font-weight: bold;
font-size: 16px;
padding: 10px 20px;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
transition: background 0.3s ease, box-shadow 0.3s ease;
}
/* Hover effect for the submit button */
.gradio-button:hover {
background: linear-gradient(45deg, #1dd1a1, #00b894);
box-shadow: 0 6px 10px rgba(0, 0, 0, 0.2);
}
/* Styling for the input box and other components */
.gradio-input, .gradio-output, .gradio-chatbot {
background: rgba(255, 255, 255, 0.1);
border-radius: 8px;
border: none;
padding: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gradio-input:focus {
outline: none;
background: rgba(255, 255, 255, 0.2);
}
/* Shadow effect on components */
.gradio-box {
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.15);
}
"""
# Gradio app code (as before)
def gradio_app(message, location, health_query, history, state):
# Chatbot interaction
history, _ = chatbot(message, history)
# Sentiment analysis
sentiment_response = analyze_sentiment(message)
# Emotion detection
emotion_response = detect_emotion(message)
# Health professional search and map display
route_info, map_html = get_health_professionals_and_map(location, health_query)
# Generate suggestions based on the detected emotion
suggestions = generate_suggestions(emotion_response.split(': ')[1])
# Create a DataFrame for displaying suggestions
suggestions_df = pd.DataFrame(suggestions)
return history, sentiment_response, emotion_response, route_info, map_html, gr.DataFrame(suggestions_df, headers=["Title", "Subject", "Link"]), state
# Gradio UI components
message_input = gr.Textbox(lines=1, label="πŸ’¬ Message")
location_input = gr.Textbox(value="Honolulu, HI", lines=1, label="πŸ“ Your Location")
health_query_input = gr.Textbox(value="psychologist", lines=1, label="πŸ‘©β€βš•οΈ Health Professional Query")
history_output = gr.Chatbot()
sentiment_output = gr.Textbox()
emotion_output = gr.Textbox()
route_info_output = gr.Textbox()
map_output = gr.HTML()
suggestions_output = gr.DataFrame()
# Interface with custom CSS
gr.Interface(fn=gradio_app, inputs=[message_input, location_input, health_query_input, history_output, gr.State()],
outputs=[history_output, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output],
live=True,
css=custom_css).launch()