Spaces:
Sleeping
Sleeping
File size: 10,028 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 274d1f4 37d6095 274d1f4 dacc7c0 274d1f4 334ba26 274d1f4 494aa89 274d1f4 334ba26 274d1f4 494aa89 0e313c1 274d1f4 c69efb6 274d1f4 c69efb6 274d1f4 936af04 4184e5e 274d1f4 936af04 4525308 274d1f4 4184e5e 274d1f4 4184e5e 274d1f4 4184e5e 274d1f4 4184e5e 274d1f4 9508310 274d1f4 936af04 274d1f4 936af04 f0734be 274d1f4 2f693ca 274d1f4 864d91e 274d1f4 f0734be 274d1f4 f0734be 274d1f4 37c8a73 f0734be 274d1f4 756dc7b 274d1f4 756dc7b 274d1f4 756dc7b 274d1f4 756dc7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import pandas as pd
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json for Well-Being Chatbot
with open("intents.json") as file:
data = json.load(file)
# Load preprocessed data for Well-Being Chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the model structure for Well-Being Chatbot
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
# Function to process user input into a bag-of-words format for Chatbot
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function for Well-Being Chatbot
def chatbot(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
# Convert the new message and response to the 'messages' format
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, history
# Sentiment Analysis using Hugging Face model
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] # Assuming 3 classes
return f"Predicted Sentiment: {sentiment}"
# Emotion Detection using Hugging Face model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
return f"Emotion Detected: {emotion}"
# Initialize Google Maps API client securely
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Function to search for health professionals
def search_health_professionals(query, location, radius=10000):
places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
return places_result.get('results', [])
# Function to get directions and display on Gradio UI
def get_health_professionals_and_map(current_location, health_professional_query):
location = gmaps.geocode(current_location)
if location:
lat = location[0]["geometry"]["location"]["lat"]
lng = location[0]["geometry"]["location"]["lng"]
location = (lat, lng)
professionals = search_health_professionals(health_professional_query, location)
# Generate map
map_center = location
m = folium.Map(location=map_center, zoom_start=13)
# Add markers to the map
for place in professionals:
folium.Marker(
location=[place['geometry']['location']['lat'], place['geometry']['location']['lng']],
popup=place['name']
).add_to(m)
# Convert map to HTML for Gradio display
map_html = m._repr_html_()
# Route information
route_info = "\n".join([f"{place['name']} - {place['vicinity']}" for place in professionals])
return route_info, map_html
else:
return "Unable to find location.", ""
# Function to generate suggestions based on the detected emotion
def generate_suggestions(emotion):
suggestions = {
'joy': [
{"Title": "Relaxation Techniques πΏ", "Subject": "Relaxation", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'},
{"Title": "Dealing with Stress π", "Subject": "Stress Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'},
{"Title": "Emotional Wellness Toolkit πͺ", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Relaxation Video π₯", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'}
],
'anger': [
{"Title": "Emotional Wellness Toolkit π‘", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Stress Management Tips π§", "Subject": "Stress Management", "Link": '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Harvard Health: Stress Management</a>'},
{"Title": "Dealing with Anger π₯", "Subject": "Anger Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anger</a>'},
{"Title": "Relaxation Video π¬", "Subject": "Video", "Link": '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch Video</a>'}
],
# Add more suggestions for other emotions as required...
}
return suggestions.get(emotion, [])
# Custom CSS for green gradient background and button
custom_css = """
/* Gradient Background */
body {
background: linear-gradient(135deg, #00b894, #1dd1a1);
font-family: Arial, sans-serif;
color: white;
box-shadow: inset 0 0 50px rgba(0, 0, 0, 0.1), 0 0 30px rgba(0, 0, 0, 0.1);
}
/* Green gradient submit button */
.gradio-button {
background: linear-gradient(45deg, #00b894, #1dd1a1);
border: none;
color: white;
font-weight: bold;
font-size: 16px;
padding: 10px 20px;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
transition: background 0.3s ease, box-shadow 0.3s ease;
}
/* Hover effect for the submit button */
.gradio-button:hover {
background: linear-gradient(45deg, #1dd1a1, #00b894);
box-shadow: 0 6px 10px rgba(0, 0, 0, 0.2);
}
/* Styling for the input box and other components */
.gradio-input, .gradio-output, .gradio-chatbot {
background: rgba(255, 255, 255, 0.1);
border-radius: 8px;
border: none;
padding: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gradio-input:focus {
outline: none;
background: rgba(255, 255, 255, 0.2);
}
/* Shadow effect on components */
.gradio-box {
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.15);
}
"""
# Gradio app code (as before)
def gradio_app(message, location, health_query, history, state):
# Chatbot interaction
history, _ = chatbot(message, history)
# Sentiment analysis
sentiment_response = analyze_sentiment(message)
# Emotion detection
emotion_response = detect_emotion(message)
# Health professional search and map display
route_info, map_html = get_health_professionals_and_map(location, health_query)
# Generate suggestions based on the detected emotion
suggestions = generate_suggestions(emotion_response.split(': ')[1])
# Create a DataFrame for displaying suggestions
suggestions_df = pd.DataFrame(suggestions)
return history, sentiment_response, emotion_response, route_info, map_html, gr.DataFrame(suggestions_df, headers=["Title", "Subject", "Link"]), state
# Gradio UI components
message_input = gr.Textbox(lines=1, label="π¬ Message")
location_input = gr.Textbox(value="Honolulu, HI", lines=1, label="π Your Location")
health_query_input = gr.Textbox(value="psychologist", lines=1, label="π©ββοΈ Health Professional Query")
history_output = gr.Chatbot()
sentiment_output = gr.Textbox()
emotion_output = gr.Textbox()
route_info_output = gr.Textbox()
map_output = gr.HTML()
suggestions_output = gr.DataFrame()
# Interface with custom CSS
gr.Interface(fn=gradio_app, inputs=[message_input, location_input, health_query_input, history_output, gr.State()],
outputs=[history_output, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output],
live=True,
css=custom_css).launch()
|