File size: 10,028 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
 
fa97be4
274d1f4
 
37d6095
274d1f4
 
dacc7c0
274d1f4
334ba26
 
274d1f4
494aa89
274d1f4
334ba26
274d1f4
494aa89
 
0e313c1
274d1f4
 
 
 
 
 
c69efb6
274d1f4
 
 
c69efb6
274d1f4
936af04
 
4184e5e
274d1f4
936af04
 
 
 
 
4525308
274d1f4
 
4184e5e
274d1f4
4184e5e
274d1f4
 
 
 
 
 
 
 
 
 
4184e5e
274d1f4
 
4184e5e
274d1f4
 
 
9508310
 
274d1f4
 
936af04
274d1f4
 
 
936af04
f0734be
274d1f4
 
 
 
 
 
 
 
 
 
2f693ca
274d1f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864d91e
274d1f4
 
 
 
 
 
f0734be
274d1f4
 
 
 
 
f0734be
274d1f4
37c8a73
f0734be
274d1f4
 
756dc7b
 
 
274d1f4
756dc7b
274d1f4
756dc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274d1f4
 
 
756dc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import pandas as pd
import torch

# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json for Well-Being Chatbot
with open("intents.json") as file:
    data = json.load(file)

# Load preprocessed data for Well-Being Chatbot
with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the model structure for Well-Being Chatbot
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")

# Function to process user input into a bag-of-words format for Chatbot
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function for Well-Being Chatbot
def chatbot(message, history):
    history = history or []
    message = message.lower()
    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]

        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"
    except Exception as e:
        response = f"An error occurred: {str(e)}"
    
    # Convert the new message and response to the 'messages' format
    history.append({"role": "user", "content": message})
    history.append({"role": "assistant", "content": response})
    
    return history, history

# Sentiment Analysis using Hugging Face model
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment = ["Negative", "Neutral", "Positive"][predicted_class]  # Assuming 3 classes
    return f"Predicted Sentiment: {sentiment}"

# Emotion Detection using Hugging Face model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]['label']
    return f"Emotion Detected: {emotion}"

# Initialize Google Maps API client securely
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))

# Function to search for health professionals
def search_health_professionals(query, location, radius=10000):
    places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
    return places_result.get('results', [])

# Function to get directions and display on Gradio UI
def get_health_professionals_and_map(current_location, health_professional_query):
    location = gmaps.geocode(current_location)
    if location:
        lat = location[0]["geometry"]["location"]["lat"]
        lng = location[0]["geometry"]["location"]["lng"]
        location = (lat, lng)
        
        professionals = search_health_professionals(health_professional_query, location)
        
        # Generate map
        map_center = location
        m = folium.Map(location=map_center, zoom_start=13)
        
        # Add markers to the map
        for place in professionals:
            folium.Marker(
                location=[place['geometry']['location']['lat'], place['geometry']['location']['lng']],
                popup=place['name']
            ).add_to(m)
        
        # Convert map to HTML for Gradio display
        map_html = m._repr_html_()
        
        # Route information
        route_info = "\n".join([f"{place['name']} - {place['vicinity']}" for place in professionals])
        
        return route_info, map_html
    else:
        return "Unable to find location.", ""

# Function to generate suggestions based on the detected emotion
def generate_suggestions(emotion):
    suggestions = {
        'joy': [
            {"Title": "Relaxation Techniques 🌿", "Subject": "Relaxation", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'},
            {"Title": "Dealing with Stress πŸ’†", "Subject": "Stress Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'},
            {"Title": "Emotional Wellness Toolkit πŸ’ͺ", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
            {"Title": "Relaxation Video πŸŽ₯", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'}
        ],
        'anger': [
            {"Title": "Emotional Wellness Toolkit πŸ’‘", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
            {"Title": "Stress Management Tips 🧘", "Subject": "Stress Management", "Link": '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Harvard Health: Stress Management</a>'},
            {"Title": "Dealing with Anger πŸ’₯", "Subject": "Anger Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anger</a>'},
            {"Title": "Relaxation Video 🎬", "Subject": "Video", "Link": '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch Video</a>'}
        ],
        # Add more suggestions for other emotions as required...
    }

    return suggestions.get(emotion, [])

# Custom CSS for green gradient background and button
custom_css = """
/* Gradient Background */
body {
    background: linear-gradient(135deg, #00b894, #1dd1a1);
    font-family: Arial, sans-serif;
    color: white;
    box-shadow: inset 0 0 50px rgba(0, 0, 0, 0.1), 0 0 30px rgba(0, 0, 0, 0.1);
}

/* Green gradient submit button */
.gradio-button {
    background: linear-gradient(45deg, #00b894, #1dd1a1);
    border: none;
    color: white;
    font-weight: bold;
    font-size: 16px;
    padding: 10px 20px;
    border-radius: 10px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    transition: background 0.3s ease, box-shadow 0.3s ease;
}

/* Hover effect for the submit button */
.gradio-button:hover {
    background: linear-gradient(45deg, #1dd1a1, #00b894);
    box-shadow: 0 6px 10px rgba(0, 0, 0, 0.2);
}

/* Styling for the input box and other components */
.gradio-input, .gradio-output, .gradio-chatbot {
    background: rgba(255, 255, 255, 0.1);
    border-radius: 8px;
    border: none;
    padding: 10px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}

.gradio-input:focus {
    outline: none;
    background: rgba(255, 255, 255, 0.2);
}

/* Shadow effect on components */
.gradio-box {
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.15);
}
"""

# Gradio app code (as before)
def gradio_app(message, location, health_query, history, state):
    # Chatbot interaction
    history, _ = chatbot(message, history)
    
    # Sentiment analysis
    sentiment_response = analyze_sentiment(message)
    
    # Emotion detection
    emotion_response = detect_emotion(message)
    
    # Health professional search and map display
    route_info, map_html = get_health_professionals_and_map(location, health_query)
    
    # Generate suggestions based on the detected emotion
    suggestions = generate_suggestions(emotion_response.split(': ')[1])
    
    # Create a DataFrame for displaying suggestions
    suggestions_df = pd.DataFrame(suggestions)
    
    return history, sentiment_response, emotion_response, route_info, map_html, gr.DataFrame(suggestions_df, headers=["Title", "Subject", "Link"]), state

# Gradio UI components
message_input = gr.Textbox(lines=1, label="πŸ’¬ Message")
location_input = gr.Textbox(value="Honolulu, HI", lines=1, label="πŸ“ Your Location")
health_query_input = gr.Textbox(value="psychologist", lines=1, label="πŸ‘©β€βš•οΈ Health Professional Query")
history_output = gr.Chatbot()
sentiment_output = gr.Textbox()
emotion_output = gr.Textbox()
route_info_output = gr.Textbox()
map_output = gr.HTML()
suggestions_output = gr.DataFrame()

# Interface with custom CSS
gr.Interface(fn=gradio_app, inputs=[message_input, location_input, health_query_input, history_output, gr.State()],
             outputs=[history_output, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output],
             live=True, 
             css=custom_css).launch()