Testing / app.py
DreamStream-1's picture
Update app.py
90f35d6 verified
raw
history blame
9.98 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow and suppress logs
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Ensure necessary NLTK resources are downloaded
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load intents.json and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion detection models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Helper Functions
def bag_of_words(s, words):
"""Convert user input into bag-of-words vector for use in chatbot model."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chatbot(message, history):
"""Generate chatbot response and append to history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Analyze sentiment with emojis."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment_class]
def detect_emotion(user_input):
"""Detect user emotion with emojis."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
emotion_map = {
"joy": "😊 Joy",
"anger": "😠 Anger",
"sadness": "😒 Sadness",
"fear": "😨 Fear",
"surprise": "😲 Surprise",
"neutral": "😐 Neutral"
}
return emotion_map.get(emotion, "Unknown Emotion πŸ€”")
def generate_suggestions(emotion):
"""Return suggestions based on detected emotion."""
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
"anger": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Stress Management Tips", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
],
"fear": [
["Mindfulness Practices", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
],
"sadness": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
],
"surprise": [
["Managing Stress", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
["Coping Strategies", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
}
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
def get_health_professionals_and_map(location, query):
"""Search for nearby professionals and generate interactive map."""
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
map_ = folium.Map(location=(lat, lng), zoom_start=13)
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found nearby."], ""
except Exception as e:
return [f"Error: {str(e)}"], ""
# Application Logic
def app_function(user_input, location, query, history):
chatbot_history, _ = chatbot(user_input, history)
sentiment = analyze_sentiment(user_input)
emotion = detect_emotion(user_input)
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Custom CSS for Styling Submit Button and UI
custom_css = """
body {
background: linear-gradient(135deg, #000000, #ff5722);
color: white;
font-family: 'Roboto', sans-serif;
}
button {
background: linear-gradient(45deg, #ff5722, #ff9800) !important;
color: white !important;
border: none;
border-radius: 8px;
padding: 12px 20px;
cursor: pointer;
font-size: 16px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
}
button:hover {
background: linear-gradient(45deg, #ff9800, #ff5722) !important;
}
textarea, input {
background: #000000 !important;
color: white !important;
border: 1px solid #ff5722 !important;
padding: 12px;
font-size: 14px;
border-radius: 8px;
}
.gr-chatbot, .gr-textbox, .gr-html, .gr-dataframe {
background-color: #000 !important;
border: 1px solid #ff5722 !important;
color: white !important;
}
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.Markdown("<h1 style='text-align: center;'>🌟 Well-Being Companion</h1>")
gr.Markdown("<h3 style='text-align: center;'>Empowering Your Well-Being Journey πŸ’š</h3>")
with gr.Row():
user_message = gr.Textbox(label="Your Message", placeholder="Type your message...")
location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
query = gr.Textbox(label="Search Query", placeholder="e.g., therapist, doctor")
chatbot_output = gr.Chatbot(label="Chat History")
sentiment_output = gr.Textbox(label="Detected Sentiment")
emotion_output = gr.Textbox(label="Detected Emotion")
suggestion_table = gr.DataFrame(headers=["Suggestion Title", "Link"], label="Well-Being Suggestions")
professionals_output = gr.Textbox(label="Health Professionals Nearby", lines=5)
map_html = gr.HTML(label="Interactive Map")
submit_btn = gr.Button("Submit")
submit_btn.click(
app_function,
inputs=[user_message, location, query, chatbot_output],
outputs=[chatbot_output, sentiment_output, emotion_output, suggestion_table, professionals_output, map_html]
)
app.launch()