File size: 9,975 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
fa97be4
90f35d6
274d1f4
d30f6a2
eefcaa7
90f35d6
6858546
dacc7c0
d30f6a2
334ba26
 
90f35d6
494aa89
6858546
334ba26
494aa89
 
0e313c1
90f35d6
4e61093
274d1f4
 
 
 
6858546
 
c69efb6
90f35d6
9e5813b
 
11851f1
9e5813b
 
 
90f35d6
4e61093
 
90f35d6
936af04
90f35d6
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
274d1f4
a4c9f49
4184e5e
 
d9bd34f
 
4e61093
6858546
 
 
4184e5e
 
d9bd34f
11851f1
6858546
936af04
f0734be
90f35d6
274d1f4
 
 
6858546
 
 
274d1f4
 
90f35d6
274d1f4
 
d9bd34f
90f35d6
 
 
 
 
 
 
 
 
274d1f4
864d91e
90f35d6
658d2e0
 
d30f6a2
 
 
90f35d6
658d2e0
 
d30f6a2
90f35d6
 
 
d9bd34f
 
 
 
90f35d6
 
d9bd34f
 
 
 
90f35d6
d9bd34f
 
90f35d6
d9bd34f
90f35d6
658d2e0
37c8a73
d9bd34f
6858546
4e61093
90f35d6
4e61093
 
 
 
90f35d6
658d2e0
 
4e61093
 
 
90f35d6
 
 
 
4e61093
90f35d6
4e61093
90f35d6
4e61093
90f35d6
d9bd34f
90f35d6
 
d9bd34f
1949203
 
90f35d6
4568d77
90f35d6
bdb69d5
90f35d6
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb69d5
90f35d6
 
bdb69d5
90f35d6
 
 
 
 
 
 
a699c5b
90f35d6
 
 
 
5f4fda6
bdb69d5
 
d9bd34f
bdb69d5
90f35d6
 
658d2e0
4568d77
90f35d6
d9bd34f
90f35d6
d9bd34f
90f35d6
 
 
 
 
 
d9bd34f
90f35d6
d9bd34f
90f35d6
6858546
90f35d6
 
6858546
 
658d2e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch

# Disable GPU usage for TensorFlow and suppress logs
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

# Ensure necessary NLTK resources are downloaded
nltk.download("punkt")

# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()

# Load intents.json and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Hugging Face sentiment and emotion detection models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))

# Helper Functions
def bag_of_words(s, words):
    """Convert user input into bag-of-words vector for use in chatbot model."""
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def chatbot(message, history):
    """Generate chatbot response and append to history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm not sure how to respond to that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {str(e)}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    """Analyze sentiment with emojis."""
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return sentiment_map[sentiment_class]

def detect_emotion(user_input):
    """Detect user emotion with emojis."""
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]['label']
    emotion_map = {
        "joy": "😊 Joy",
        "anger": "😠 Anger",
        "sadness": "😒 Sadness",
        "fear": "😨 Fear",
        "surprise": "😲 Surprise",
        "neutral": "😐 Neutral"
    }
    return emotion_map.get(emotion, "Unknown Emotion πŸ€”")

def generate_suggestions(emotion):
    """Return suggestions based on detected emotion."""
    suggestions = {
        "joy": [
            ["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
            ["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
        ],
        "anger": [
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Stress Management Tips", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
            ["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
        ],
        "fear": [
            ["Mindfulness Practices", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
            ["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
        ],
        "sadness": [
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
        ],
        "surprise": [
            ["Managing Stress", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
            ["Coping Strategies", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
        ],
    }
    return suggestions.get(emotion.lower(), [["No suggestions available", ""]])

def get_health_professionals_and_map(location, query):
    """Search for nearby professionals and generate interactive map."""
    try:
        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]

            professionals = []
            for place in places_result:
                professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=place["name"]
                ).add_to(map_)
            return professionals, map_._repr_html_()
        return ["No professionals found nearby."], ""
    except Exception as e:
        return [f"Error: {str(e)}"], ""

# Application Logic
def app_function(user_input, location, query, history):
    chatbot_history, _ = chatbot(user_input, history)
    sentiment = analyze_sentiment(user_input)
    emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    return chatbot_history, sentiment, emotion, suggestions, professionals, map_html

# Custom CSS for Styling Submit Button and UI
custom_css = """
body { 
    background: linear-gradient(135deg, #000000, #ff5722); 
    color: white; 
    font-family: 'Roboto', sans-serif; 
}
button { 
    background: linear-gradient(45deg, #ff5722, #ff9800) !important; 
    color: white !important; 
    border: none; 
    border-radius: 8px; 
    padding: 12px 20px; 
    cursor: pointer; 
    font-size: 16px; 
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3); 
}
button:hover { 
    background: linear-gradient(45deg, #ff9800, #ff5722) !important; 
}
textarea, input { 
    background: #000000 !important; 
    color: white !important; 
    border: 1px solid #ff5722 !important; 
    padding: 12px; 
    font-size: 14px; 
    border-radius: 8px; 
}
.gr-chatbot, .gr-textbox, .gr-html, .gr-dataframe { 
    background-color: #000 !important; 
    border: 1px solid #ff5722 !important; 
    color: white !important; 
}
"""

# Gradio Application
with gr.Blocks(css=custom_css) as app:
    gr.Markdown("<h1 style='text-align: center;'>🌟 Well-Being Companion</h1>")
    gr.Markdown("<h3 style='text-align: center;'>Empowering Your Well-Being Journey πŸ’š</h3>")

    with gr.Row():
        user_message = gr.Textbox(label="Your Message", placeholder="Type your message...")
        location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
        query = gr.Textbox(label="Search Query", placeholder="e.g., therapist, doctor")

    chatbot_output = gr.Chatbot(label="Chat History")
    sentiment_output = gr.Textbox(label="Detected Sentiment")
    emotion_output = gr.Textbox(label="Detected Emotion")
    suggestion_table = gr.DataFrame(headers=["Suggestion Title", "Link"], label="Well-Being Suggestions")
    professionals_output = gr.Textbox(label="Health Professionals Nearby", lines=5)
    map_html = gr.HTML(label="Interactive Map")

    submit_btn = gr.Button("Submit")

    submit_btn.click(
        app_function,
        inputs=[user_message, location, query, chatbot_output],
        outputs=[chatbot_output, sentiment_output, emotion_output, suggestion_table, professionals_output, map_html]
    )

app.launch()