Spaces:
Sleeping
Sleeping
File size: 9,975 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 90f35d6 274d1f4 d30f6a2 eefcaa7 90f35d6 6858546 dacc7c0 d30f6a2 334ba26 90f35d6 494aa89 6858546 334ba26 494aa89 0e313c1 90f35d6 4e61093 274d1f4 6858546 c69efb6 90f35d6 9e5813b 11851f1 9e5813b 90f35d6 4e61093 90f35d6 936af04 90f35d6 4e61093 4184e5e 6858546 936af04 4525308 274d1f4 a4c9f49 4184e5e d9bd34f 4e61093 6858546 4184e5e d9bd34f 11851f1 6858546 936af04 f0734be 90f35d6 274d1f4 6858546 274d1f4 90f35d6 274d1f4 d9bd34f 90f35d6 274d1f4 864d91e 90f35d6 658d2e0 d30f6a2 90f35d6 658d2e0 d30f6a2 90f35d6 d9bd34f 90f35d6 d9bd34f 90f35d6 d9bd34f 90f35d6 d9bd34f 90f35d6 658d2e0 37c8a73 d9bd34f 6858546 4e61093 90f35d6 4e61093 90f35d6 658d2e0 4e61093 90f35d6 4e61093 90f35d6 4e61093 90f35d6 4e61093 90f35d6 d9bd34f 90f35d6 d9bd34f 1949203 90f35d6 4568d77 90f35d6 bdb69d5 90f35d6 bdb69d5 90f35d6 bdb69d5 90f35d6 a699c5b 90f35d6 5f4fda6 bdb69d5 d9bd34f bdb69d5 90f35d6 658d2e0 4568d77 90f35d6 d9bd34f 90f35d6 d9bd34f 90f35d6 d9bd34f 90f35d6 d9bd34f 90f35d6 6858546 90f35d6 6858546 658d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow and suppress logs
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Ensure necessary NLTK resources are downloaded
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load intents.json and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion detection models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Helper Functions
def bag_of_words(s, words):
"""Convert user input into bag-of-words vector for use in chatbot model."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chatbot(message, history):
"""Generate chatbot response and append to history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm not sure how to respond to that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Analyze sentiment with emojis."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment_class]
def detect_emotion(user_input):
"""Detect user emotion with emojis."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
emotion_map = {
"joy": "π Joy",
"anger": "π Anger",
"sadness": "π’ Sadness",
"fear": "π¨ Fear",
"surprise": "π² Surprise",
"neutral": "π Neutral"
}
return emotion_map.get(emotion, "Unknown Emotion π€")
def generate_suggestions(emotion):
"""Return suggestions based on detected emotion."""
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
"anger": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Stress Management Tips", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
],
"fear": [
["Mindfulness Practices", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
],
"sadness": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
],
"surprise": [
["Managing Stress", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
["Coping Strategies", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
}
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
def get_health_professionals_and_map(location, query):
"""Search for nearby professionals and generate interactive map."""
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
map_ = folium.Map(location=(lat, lng), zoom_start=13)
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found nearby."], ""
except Exception as e:
return [f"Error: {str(e)}"], ""
# Application Logic
def app_function(user_input, location, query, history):
chatbot_history, _ = chatbot(user_input, history)
sentiment = analyze_sentiment(user_input)
emotion = detect_emotion(user_input)
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Custom CSS for Styling Submit Button and UI
custom_css = """
body {
background: linear-gradient(135deg, #000000, #ff5722);
color: white;
font-family: 'Roboto', sans-serif;
}
button {
background: linear-gradient(45deg, #ff5722, #ff9800) !important;
color: white !important;
border: none;
border-radius: 8px;
padding: 12px 20px;
cursor: pointer;
font-size: 16px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
}
button:hover {
background: linear-gradient(45deg, #ff9800, #ff5722) !important;
}
textarea, input {
background: #000000 !important;
color: white !important;
border: 1px solid #ff5722 !important;
padding: 12px;
font-size: 14px;
border-radius: 8px;
}
.gr-chatbot, .gr-textbox, .gr-html, .gr-dataframe {
background-color: #000 !important;
border: 1px solid #ff5722 !important;
color: white !important;
}
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.Markdown("<h1 style='text-align: center;'>π Well-Being Companion</h1>")
gr.Markdown("<h3 style='text-align: center;'>Empowering Your Well-Being Journey π</h3>")
with gr.Row():
user_message = gr.Textbox(label="Your Message", placeholder="Type your message...")
location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
query = gr.Textbox(label="Search Query", placeholder="e.g., therapist, doctor")
chatbot_output = gr.Chatbot(label="Chat History")
sentiment_output = gr.Textbox(label="Detected Sentiment")
emotion_output = gr.Textbox(label="Detected Emotion")
suggestion_table = gr.DataFrame(headers=["Suggestion Title", "Link"], label="Well-Being Suggestions")
professionals_output = gr.Textbox(label="Health Professionals Nearby", lines=5)
map_html = gr.HTML(label="Interactive Map")
submit_btn = gr.Button("Submit")
submit_btn.click(
app_function,
inputs=[user_message, location, query, chatbot_output],
outputs=[chatbot_output, sentiment_output, emotion_output, suggestion_table, professionals_output, map_html]
)
app.launch() |