Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,20 +17,20 @@ import torch
|
|
17 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
18 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
19 |
|
20 |
-
# Download NLTK resources
|
21 |
nltk.download("punkt")
|
22 |
|
23 |
# Initialize Lancaster Stemmer
|
24 |
stemmer = LancasterStemmer()
|
25 |
|
26 |
-
# Load chatbot
|
27 |
with open("intents.json") as file:
|
28 |
intents_data = json.load(file)
|
29 |
|
30 |
with open("data.pickle", "rb") as f:
|
31 |
words, labels, training, output = pickle.load(f)
|
32 |
|
33 |
-
# Build
|
34 |
net = tflearn.input_data(shape=[None, len(training[0])])
|
35 |
net = tflearn.fully_connected(net, 8)
|
36 |
net = tflearn.fully_connected(net, 8)
|
@@ -39,18 +39,17 @@ net = tflearn.regression(net)
|
|
39 |
chatbot_model = tflearn.DNN(net)
|
40 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
41 |
|
42 |
-
#
|
43 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
44 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
45 |
|
46 |
-
# Model for emotion detection
|
47 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
48 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
49 |
|
50 |
-
# Google Maps API
|
51 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
52 |
|
53 |
-
#
|
54 |
def bag_of_words(s, words):
|
55 |
bag = [0] * len(words)
|
56 |
s_words = word_tokenize(s)
|
@@ -61,23 +60,24 @@ def bag_of_words(s, words):
|
|
61 |
bag[i] = 1
|
62 |
return np.array(bag)
|
63 |
|
|
|
64 |
def chatbot(message, history):
|
65 |
"""Generate chatbot response and append to history."""
|
66 |
history = history or []
|
67 |
try:
|
68 |
-
|
69 |
-
tag = labels[np.argmax(
|
70 |
response = "I'm not sure how to respond to that. π€"
|
71 |
for intent in intents_data["intents"]:
|
72 |
if intent["tag"] == tag:
|
73 |
response = random.choice(intent["responses"])
|
74 |
break
|
75 |
except Exception as e:
|
76 |
-
response = f"Error: {str(e)}
|
77 |
history.append((message, response))
|
78 |
return history, response
|
79 |
|
80 |
-
# Sentiment
|
81 |
def analyze_sentiment(user_input):
|
82 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
83 |
with torch.no_grad():
|
@@ -86,33 +86,50 @@ def analyze_sentiment(user_input):
|
|
86 |
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
|
87 |
return sentiment_map[sentiment_class]
|
88 |
|
89 |
-
# Emotion
|
90 |
def detect_emotion(user_input):
|
91 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
92 |
result = pipe(user_input)
|
93 |
-
emotion = result[0][
|
94 |
return emotion
|
95 |
|
96 |
# Generate Suggestions
|
97 |
def generate_suggestions(emotion):
|
|
|
98 |
suggestions = {
|
99 |
"joy": [
|
100 |
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
|
101 |
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
|
102 |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
|
103 |
-
["Relaxation
|
104 |
],
|
105 |
"anger": [
|
106 |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
|
107 |
-
["Stress Management Tips", '<a href="https://www.health.harvard.edu
|
108 |
-
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/
|
109 |
-
["Relaxation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
],
|
111 |
}
|
112 |
-
return suggestions.get(emotion, [["No suggestions available", ""]])
|
113 |
|
114 |
-
# Get
|
115 |
def get_health_professionals_and_map(location, query):
|
|
|
116 |
try:
|
117 |
geo_location = gmaps.geocode(location)
|
118 |
if geo_location:
|
@@ -130,112 +147,64 @@ def get_health_professionals_and_map(location, query):
|
|
130 |
except Exception as e:
|
131 |
return [f"Error: {e}"], ""
|
132 |
|
133 |
-
#
|
134 |
-
def app_function(
|
135 |
-
chatbot_history,
|
136 |
-
|
137 |
-
emotion = detect_emotion(message.lower())
|
138 |
suggestions = generate_suggestions(emotion)
|
139 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
140 |
-
return chatbot_history,
|
141 |
|
142 |
-
# Enhanced CSS for Custom
|
143 |
custom_css = """
|
144 |
-
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
|
145 |
body {
|
146 |
background: linear-gradient(135deg, #000000, #ff5722);
|
147 |
color: white;
|
148 |
font-family: 'Roboto', sans-serif;
|
149 |
}
|
150 |
-
button {
|
151 |
-
background-color: #ff5722 !important;
|
152 |
-
border: none !important;
|
153 |
-
color: white !important;
|
154 |
-
padding: 12px 20px;
|
155 |
-
font-size: 16px;
|
156 |
-
border-radius: 8px;
|
157 |
-
cursor: pointer;
|
158 |
-
}
|
159 |
-
button:hover {
|
160 |
-
background-color: #e64a19 !important;
|
161 |
-
}
|
162 |
textarea, input[type="text"], .gr-chatbot {
|
163 |
background: #000000 !important;
|
164 |
color: white !important;
|
165 |
border: 2px solid #ff5722 !important;
|
|
|
166 |
padding: 12px !important;
|
167 |
-
border-radius: 8px !important;
|
168 |
-
font-size: 14px;
|
169 |
}
|
170 |
-
.gr-dataframe
|
171 |
background: #000000 !important;
|
172 |
color: white !important;
|
|
|
173 |
border: 2px solid #ff5722 !important;
|
174 |
-
|
175 |
-
font-size: 14px;
|
176 |
-
}
|
177 |
-
.suggestions-title {
|
178 |
-
font-size: 1.5rem !important;
|
179 |
-
font-weight: bold;
|
180 |
-
color: white;
|
181 |
-
margin-top: 20px;
|
182 |
}
|
183 |
-
h1 {
|
184 |
-
font-size: 4rem;
|
185 |
-
font-weight: bold;
|
186 |
-
margin-bottom: 10px;
|
187 |
color: white;
|
188 |
text-align: center;
|
189 |
-
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.6);
|
190 |
-
}
|
191 |
-
h2 {
|
192 |
-
font-weight: 400;
|
193 |
-
font-size: 1.8rem;
|
194 |
-
color: white;
|
195 |
-
text-shadow: 2px 2px 5px rgba(0, 0, 0, 0.4);
|
196 |
-
}
|
197 |
-
.input-title, .output-title {
|
198 |
-
font-size: 1.5rem;
|
199 |
font-weight: bold;
|
200 |
-
color: black;
|
201 |
-
margin-bottom: 10px;
|
202 |
}
|
203 |
"""
|
204 |
|
205 |
-
# Gradio
|
206 |
with gr.Blocks(css=custom_css) as app:
|
207 |
-
gr.
|
208 |
-
gr.
|
209 |
|
210 |
with gr.Row():
|
211 |
-
gr.
|
212 |
-
|
213 |
-
gr.
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
gr.
|
220 |
-
|
221 |
-
gr.
|
222 |
-
|
223 |
-
|
224 |
-
suggestions_output = gr.DataFrame(headers=["Title", "Links"], label=None)
|
225 |
-
|
226 |
-
gr.Markdown("<h2 class='suggestions-title'>Health Professionals Nearby</h2>")
|
227 |
-
map_output = gr.HTML(label=None)
|
228 |
-
professional_display = gr.Textbox(label=None, lines=5)
|
229 |
-
|
230 |
-
submit_btn = gr.Button("Submit")
|
231 |
-
|
232 |
-
submit_btn.click(
|
233 |
app_function,
|
234 |
-
inputs=[
|
235 |
-
outputs=[
|
236 |
-
chatbot_box, sentiment_output, emotion_output,
|
237 |
-
suggestions_output, professional_display, map_output,
|
238 |
-
],
|
239 |
)
|
240 |
|
241 |
app.launch()
|
|
|
17 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
18 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
19 |
|
20 |
+
# Download necessary NLTK resources
|
21 |
nltk.download("punkt")
|
22 |
|
23 |
# Initialize Lancaster Stemmer
|
24 |
stemmer = LancasterStemmer()
|
25 |
|
26 |
+
# Load chatbot training data and intents
|
27 |
with open("intents.json") as file:
|
28 |
intents_data = json.load(file)
|
29 |
|
30 |
with open("data.pickle", "rb") as f:
|
31 |
words, labels, training, output = pickle.load(f)
|
32 |
|
33 |
+
# Build the chatbot's neural network model
|
34 |
net = tflearn.input_data(shape=[None, len(training[0])])
|
35 |
net = tflearn.fully_connected(net, 8)
|
36 |
net = tflearn.fully_connected(net, 8)
|
|
|
39 |
chatbot_model = tflearn.DNN(net)
|
40 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
41 |
|
42 |
+
# Hugging Face models for sentiment and emotion detection
|
43 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
44 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
45 |
|
|
|
46 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
47 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
48 |
|
49 |
+
# Google Maps API Client
|
50 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
51 |
|
52 |
+
# Function to process text input into a bag-of-words format
|
53 |
def bag_of_words(s, words):
|
54 |
bag = [0] * len(words)
|
55 |
s_words = word_tokenize(s)
|
|
|
60 |
bag[i] = 1
|
61 |
return np.array(bag)
|
62 |
|
63 |
+
# Chatbot Logic
|
64 |
def chatbot(message, history):
|
65 |
"""Generate chatbot response and append to history."""
|
66 |
history = history or []
|
67 |
try:
|
68 |
+
result = chatbot_model.predict([bag_of_words(message, words)])
|
69 |
+
tag = labels[np.argmax(result)]
|
70 |
response = "I'm not sure how to respond to that. π€"
|
71 |
for intent in intents_data["intents"]:
|
72 |
if intent["tag"] == tag:
|
73 |
response = random.choice(intent["responses"])
|
74 |
break
|
75 |
except Exception as e:
|
76 |
+
response = f"Error: {str(e)}"
|
77 |
history.append((message, response))
|
78 |
return history, response
|
79 |
|
80 |
+
# Sentiment Analysis
|
81 |
def analyze_sentiment(user_input):
|
82 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
83 |
with torch.no_grad():
|
|
|
86 |
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
|
87 |
return sentiment_map[sentiment_class]
|
88 |
|
89 |
+
# Emotion Detection
|
90 |
def detect_emotion(user_input):
|
91 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
92 |
result = pipe(user_input)
|
93 |
+
emotion = result[0]['label']
|
94 |
return emotion
|
95 |
|
96 |
# Generate Suggestions
|
97 |
def generate_suggestions(emotion):
|
98 |
+
"""Return suggestions aligned with the detected emotion."""
|
99 |
suggestions = {
|
100 |
"joy": [
|
101 |
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
|
102 |
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
|
103 |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
|
104 |
+
["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
|
105 |
],
|
106 |
"anger": [
|
107 |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
|
108 |
+
["Stress Management Tips", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
|
109 |
+
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anger-management" target="_blank">Visit</a>'],
|
110 |
+
["Relaxation Videos", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
|
111 |
+
],
|
112 |
+
"fear": [
|
113 |
+
["Mindfulness Practices", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
|
114 |
+
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
|
115 |
+
["Relaxation Videos", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
|
116 |
+
],
|
117 |
+
"sadness": [
|
118 |
+
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
|
119 |
+
["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
|
120 |
+
["Relaxation Videos", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
|
121 |
+
],
|
122 |
+
"surprise": [
|
123 |
+
["Managing Stress", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
|
124 |
+
["Coping Strategies", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
|
125 |
+
["Relaxation Videos", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
|
126 |
],
|
127 |
}
|
128 |
+
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
|
129 |
|
130 |
+
# Get Health Professionals and Generate Map
|
131 |
def get_health_professionals_and_map(location, query):
|
132 |
+
"""Search professionals and return details + map as HTML."""
|
133 |
try:
|
134 |
geo_location = gmaps.geocode(location)
|
135 |
if geo_location:
|
|
|
147 |
except Exception as e:
|
148 |
return [f"Error: {e}"], ""
|
149 |
|
150 |
+
# Main Application Logic
|
151 |
+
def app_function(user_input, location, query, history):
|
152 |
+
chatbot_history, response = chatbot(user_input, history)
|
153 |
+
emotion = detect_emotion(user_input)
|
|
|
154 |
suggestions = generate_suggestions(emotion)
|
155 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
156 |
+
return chatbot_history, emotion, suggestions, professionals, map_html
|
157 |
|
158 |
+
# Enhanced CSS for Custom UI
|
159 |
custom_css = """
|
|
|
160 |
body {
|
161 |
background: linear-gradient(135deg, #000000, #ff5722);
|
162 |
color: white;
|
163 |
font-family: 'Roboto', sans-serif;
|
164 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
textarea, input[type="text"], .gr-chatbot {
|
166 |
background: #000000 !important;
|
167 |
color: white !important;
|
168 |
border: 2px solid #ff5722 !important;
|
169 |
+
border-radius: 5px;
|
170 |
padding: 12px !important;
|
|
|
|
|
171 |
}
|
172 |
+
.gr-dataframe {
|
173 |
background: #000000 !important;
|
174 |
color: white !important;
|
175 |
+
height: 350px !important;
|
176 |
border: 2px solid #ff5722 !important;
|
177 |
+
overflow-y: auto;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
}
|
179 |
+
h1, h2, h3 {
|
|
|
|
|
|
|
180 |
color: white;
|
181 |
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
font-weight: bold;
|
|
|
|
|
183 |
}
|
184 |
"""
|
185 |
|
186 |
+
# Gradio Application
|
187 |
with gr.Blocks(css=custom_css) as app:
|
188 |
+
gr.Markdown("<h1>π Well-Being Companion</h1>")
|
189 |
+
gr.Markdown("<h2>Empowering Your Well-Being Journey π</h2>")
|
190 |
|
191 |
with gr.Row():
|
192 |
+
user_input = gr.Textbox(label="Your Message", placeholder="Enter your message...")
|
193 |
+
location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
|
194 |
+
query = gr.Textbox(label="Query (e.g., therapists)", placeholder="Search...")
|
195 |
+
|
196 |
+
chatbot_history = gr.Chatbot(label="Chat History")
|
197 |
+
emotion_box = gr.Textbox(label="Detected Emotion")
|
198 |
+
suggestions_table = gr.DataFrame(headers=["Suggestion", "Link"])
|
199 |
+
map_box = gr.HTML(label="Map of Health Professionals")
|
200 |
+
professionals_list = gr.Textbox(label="Health Professionals Nearby", lines=5)
|
201 |
+
|
202 |
+
submit_button = gr.Button("Submit")
|
203 |
+
|
204 |
+
submit_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
app_function,
|
206 |
+
inputs=[user_input, location, query, chatbot_history],
|
207 |
+
outputs=[chatbot_history, emotion_box, suggestions_table, professionals_list, map_box],
|
|
|
|
|
|
|
208 |
)
|
209 |
|
210 |
app.launch()
|