Testing / app.py
DreamStream-1's picture
Update app.py
9508310 verified
raw
history blame
7.51 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import pandas as pd
import torch
# Disable TensorFlow GPU warnings (safe since we are using CPU)
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# Download necessary NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer for text preprocessing
stemmer = LancasterStemmer()
# Load intents.json for the chatbot
with open("intents.json") as file:
intents_data = json.load(file)
# Load tokenized training data for chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build TFlearn Chatbot Model
def build_chatbot_model():
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
return model
chatbot_model = build_chatbot_model()
# Function: Bag of Words
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Response Function
def chatbot_response(message, history):
"""Generates a chatbot response."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
idx = np.argmax(result)
tag = labels[idx]
response = "I didn't understand that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error generating response: {str(e)} πŸ’₯"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, response
# Emotion Detection Function
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
try:
result = pipe(user_input)
emotion = result[0]["label"]
emotion_map = {
"joy": "😊 Joy",
"anger": "😠 Anger",
"sadness": "😒 Sadness",
"fear": "😨 Fear",
"surprise": "😲 Surprise",
"neutral": "😐 Neutral",
}
return emotion_map.get(emotion, "Unknown Emotion πŸ€”")
except Exception as e:
return f"Error detecting emotion: {str(e)} πŸ’₯"
# Sentiment Analysis Function
sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
"""Analyze sentiment based on input."""
inputs = sentiment_tokenizer(user_input, return_tensors="pt")
try:
with torch.no_grad():
outputs = sentiment_model(**inputs)
sentiment = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment]
except Exception as e:
return f"Error in sentiment analysis: {str(e)} πŸ’₯"
# Suggestions Based on Emotion
def generate_suggestions(emotion):
suggestions_map = {
"😊 Joy": [
{"Title": "Mindful Meditation 🧘", "Link": "https://www.helpguide.org/meditation"},
{"Title": "Learn a New Skill ✨", "Link": "https://www.skillshare.com/"},
],
"😒 Sadness": [
{"Title": "Talk to a Professional πŸ’¬", "Link": "https://www.betterhelp.com/"},
{"Title": "Mental Health Toolkit πŸ› οΈ", "Link": "https://www.psychologytoday.com/"},
],
"😠 Anger": [
{"Title": "Anger Management Tips πŸ”₯", "Link": "https://www.mentalhealth.org.uk"},
{"Title": "Stress Relieving Exercises 🌿", "Link": "https://www.calm.com/"},
],
}
return suggestions_map.get(emotion, [{"Title": "General Wellness Resources 🌈", "Link": "https://www.helpguide.org/wellness"}])
# Dummy Nearby Professionals Function
def search_nearby_professionals(location, query):
"""Simulates the search for nearby professionals."""
if location and query:
return [
{"Name": "Wellness Center", "Address": "123 Wellness Way"},
{"Name": "Mental Health Clinic", "Address": "456 Recovery Road"},
{"Name": "Therapy Hub", "Address": "789 Peace Avenue"},
]
return []
# Main App Logic
def well_being_app(user_input, location, query, history):
"""Handles chatbot interaction, emotion detection, sentiment analysis, and professional search results."""
# Chatbot Response
history, _ = chatbot_response(user_input, history)
# Emotion Detection
emotion = detect_emotion(user_input)
# Sentiment Analysis
sentiment = analyze_sentiment(user_input)
# Emotion-based Suggestions
emotion_name = emotion.split(": ")[-1]
suggestions = generate_suggestions(emotion_name)
suggestions_df = pd.DataFrame(suggestions)
# Nearby Professionals Lookup
professionals = search_nearby_professionals(location, query)
return history, sentiment, emotion, suggestions_df, professionals
# Gradio Interface
with gr.Blocks() as interface:
gr.Markdown("## 🌱 Well-being Companion")
gr.Markdown("> Empowering Your Health! πŸ’š")
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="How are you feeling today? (e.g. I feel happy)")
location_input = gr.Textbox(label="Location", placeholder="Enter your city (e.g., New York)")
query_input = gr.Textbox(label="Search Query", placeholder="What are you searching for? (e.g., therapists)")
submit_button = gr.Button("Submit", variant="primary")
# Chatbot Section
chatbot_output = gr.Chatbot(label="Chatbot Interaction", type="messages", value=[])
# Sentiment and Emotion Outputs
sentiment_output = gr.Textbox(label="Sentiment Analysis")
emotion_output = gr.Textbox(label="Emotion Detected")
# Suggestions Table
suggestions_output = gr.DataFrame(label="Suggestions", value=[], headers=["Title", "Link"])
# Professionals Table
nearby_professionals_output = gr.DataFrame(label="Nearby Professionals", value=[], headers=["Name", "Address"])
# Connect Inputs to Outputs
submit_button.click(
well_being_app,
inputs=[user_input, location_input, query_input, chatbot_output],
outputs=[
chatbot_output,
sentiment_output,
emotion_output,
suggestions_output,
nearby_professionals_output,
],
)
# Run Gradio Application
interface.launch()