File size: 7,512 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
f0734be
 
fa97be4
9508310
a6192b5
37d6095
a6192b5
 
dacc7c0
9508310
334ba26
 
7479a23
494aa89
f0734be
334ba26
9508310
494aa89
 
0e313c1
9508310
f0734be
 
 
 
 
 
 
 
 
c69efb6
f0734be
c69efb6
9508310
936af04
 
4184e5e
f0734be
936af04
 
 
 
 
4525308
9508310
f0734be
9508310
4184e5e
 
f0734be
7479a23
 
9508310
f0734be
 
7479a23
4184e5e
 
f0734be
 
9508310
 
f0734be
4184e5e
9508310
f0734be
 
e623c13
f0734be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
936af04
9508310
f0734be
 
936af04
f0734be
9508310
f0734be
 
 
 
7479a23
f0734be
7479a23
f0734be
 
2f693ca
9508310
864d91e
9508310
f0734be
5d0e15d
9508310
f0734be
 
9508310
 
f0734be
 
5d0e15d
 
f0734be
37c8a73
9508310
5d0e15d
9508310
5d0e15d
9508310
 
 
 
 
 
 
 
 
 
5d0e15d
9508310
 
 
f0734be
5d0e15d
f0734be
 
5d0e15d
f0734be
 
9508310
 
 
f0734be
 
9508310
5d0e15d
 
 
7479a23
9508310
 
 
 
 
f0734be
9508310
 
 
 
5d0e15d
 
9508310
5d0e15d
9508310
 
 
5d0e15d
9508310
 
5d0e15d
9508310
 
5d0e15d
9508310
f0734be
 
9508310
 
 
 
 
 
 
 
f0734be
 
9508310
7479a23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import pandas as pd
import torch

# Disable TensorFlow GPU warnings (safe since we are using CPU)
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

# Download necessary NLTK resources
nltk.download("punkt")

# Initialize Lancaster Stemmer for text preprocessing
stemmer = LancasterStemmer()

# Load intents.json for the chatbot
with open("intents.json") as file:
    intents_data = json.load(file)

# Load tokenized training data for chatbot
with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build TFlearn Chatbot Model
def build_chatbot_model():
    net = tflearn.input_data(shape=[None, len(training[0])])
    net = tflearn.fully_connected(net, 8)
    net = tflearn.fully_connected(net, 8)
    net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
    net = tflearn.regression(net)
    model = tflearn.DNN(net)
    model.load("MentalHealthChatBotmodel.tflearn")
    return model

chatbot_model = build_chatbot_model()

# Function: Bag of Words
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chatbot Response Function
def chatbot_response(message, history):
    """Generates a chatbot response."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        idx = np.argmax(result)
        tag = labels[idx]
        response = "I didn't understand that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error generating response: {str(e)} πŸ’₯"

    history.append({"role": "user", "content": message})
    history.append({"role": "assistant", "content": response})
    return history, response

# Emotion Detection Function
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
    try:
        result = pipe(user_input)
        emotion = result[0]["label"]
        emotion_map = {
            "joy": "😊 Joy",
            "anger": "😠 Anger",
            "sadness": "😒 Sadness",
            "fear": "😨 Fear",
            "surprise": "😲 Surprise",
            "neutral": "😐 Neutral",
        }
        return emotion_map.get(emotion, "Unknown Emotion πŸ€”")
    except Exception as e:
        return f"Error detecting emotion: {str(e)} πŸ’₯"

# Sentiment Analysis Function
sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

def analyze_sentiment(user_input):
    """Analyze sentiment based on input."""
    inputs = sentiment_tokenizer(user_input, return_tensors="pt")
    try:
        with torch.no_grad():
            outputs = sentiment_model(**inputs)
        sentiment = torch.argmax(outputs.logits, dim=1).item()
        sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
        return sentiment_map[sentiment]
    except Exception as e:
        return f"Error in sentiment analysis: {str(e)} πŸ’₯"

# Suggestions Based on Emotion
def generate_suggestions(emotion):
    suggestions_map = {
        "😊 Joy": [
            {"Title": "Mindful Meditation 🧘", "Link": "https://www.helpguide.org/meditation"},
            {"Title": "Learn a New Skill ✨", "Link": "https://www.skillshare.com/"},
        ],
        "😒 Sadness": [
            {"Title": "Talk to a Professional πŸ’¬", "Link": "https://www.betterhelp.com/"},
            {"Title": "Mental Health Toolkit πŸ› οΈ", "Link": "https://www.psychologytoday.com/"},
        ],
        "😠 Anger": [
            {"Title": "Anger Management Tips πŸ”₯", "Link": "https://www.mentalhealth.org.uk"},
            {"Title": "Stress Relieving Exercises 🌿", "Link": "https://www.calm.com/"},
        ],
    }
    return suggestions_map.get(emotion, [{"Title": "General Wellness Resources 🌈", "Link": "https://www.helpguide.org/wellness"}])

# Dummy Nearby Professionals Function
def search_nearby_professionals(location, query):
    """Simulates the search for nearby professionals."""
    if location and query:
        return [
            {"Name": "Wellness Center", "Address": "123 Wellness Way"},
            {"Name": "Mental Health Clinic", "Address": "456 Recovery Road"},
            {"Name": "Therapy Hub", "Address": "789 Peace Avenue"},
        ]
    return []

# Main App Logic
def well_being_app(user_input, location, query, history):
    """Handles chatbot interaction, emotion detection, sentiment analysis, and professional search results."""
    # Chatbot Response
    history, _ = chatbot_response(user_input, history)

    # Emotion Detection
    emotion = detect_emotion(user_input)

    # Sentiment Analysis
    sentiment = analyze_sentiment(user_input)

    # Emotion-based Suggestions
    emotion_name = emotion.split(": ")[-1]
    suggestions = generate_suggestions(emotion_name)
    suggestions_df = pd.DataFrame(suggestions)

    # Nearby Professionals Lookup
    professionals = search_nearby_professionals(location, query)

    return history, sentiment, emotion, suggestions_df, professionals

# Gradio Interface
with gr.Blocks() as interface:
    gr.Markdown("## 🌱 Well-being Companion")
    gr.Markdown("> Empowering Your Health! πŸ’š")

    with gr.Row():
        user_input = gr.Textbox(label="Your Message", placeholder="How are you feeling today? (e.g. I feel happy)")
        location_input = gr.Textbox(label="Location", placeholder="Enter your city (e.g., New York)")
        query_input = gr.Textbox(label="Search Query", placeholder="What are you searching for? (e.g., therapists)")
        submit_button = gr.Button("Submit", variant="primary")

    # Chatbot Section
    chatbot_output = gr.Chatbot(label="Chatbot Interaction", type="messages", value=[])

    # Sentiment and Emotion Outputs
    sentiment_output = gr.Textbox(label="Sentiment Analysis")
    emotion_output = gr.Textbox(label="Emotion Detected")

    # Suggestions Table
    suggestions_output = gr.DataFrame(label="Suggestions", value=[], headers=["Title", "Link"])

    # Professionals Table
    nearby_professionals_output = gr.DataFrame(label="Nearby Professionals", value=[], headers=["Name", "Address"])

    # Connect Inputs to Outputs
    submit_button.click(
        well_being_app,
        inputs=[user_input, location_input, query_input, chatbot_output],
        outputs=[
            chatbot_output,
            sentiment_output,
            emotion_output,
            suggestions_output,
            nearby_professionals_output,
        ],
    )

# Run Gradio Application
interface.launch()