Testing / app.py
DreamStream-1's picture
Update app.py
9a5ce03 verified
raw
history blame
8.11 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Helper Functions
def bag_of_words(s, words):
"""Convert user input to bag-of-words vector."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
"""Generate chatbot response and maintain conversation history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm sorry, I didn't understand that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Analyze sentiment and map to emojis."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
"""Detect emotions based on input."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy 😊",
"anger": "Anger 😠",
"sadness": "Sadness 😒",
"fear": "Fear 😨",
"surprise": "Surprise 😲",
"neutral": "Neutral 😐",
}
return emotion_map.get(emotion, "Unknown πŸ€”"), emotion # Text with matching key
def generate_suggestions(emotion):
"""Return relevant suggestions based on detected emotions."""
emotion_key = emotion.lower()
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
["Emotional Toolkit", '<a href="https://www.nih.gov" target="_blank">Visit</a>'],
["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
],
"anger": [
["Handle Anger", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
["Stress Tips", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
],
"fear": [
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Mindfulness", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'],
],
"sadness": [
["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'],
],
"surprise": [
["Managing Surprises", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"neutral": [
["General Well-Being Tips", '<a href="https://www.psychologytoday.com" target="_blank">Visit</a>'],
],
}
return suggestions.get(emotion_key, [["No specific suggestions available.", ""]])
def get_health_professionals_and_map(location, query):
"""Search nearby healthcare professionals using Google Maps API."""
try:
if not location or not query:
return ["Please provide both location and query."], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', 'No address provided')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found for the given location."], ""
except Exception as e:
return [f"An error occurred: {e}"], ""
# Main Application Logic
def app_function(user_input, location, query, history):
chatbot_history, _ = generate_chatbot_response(user_input, history) # Generate chatbot response
sentiment_result = analyze_sentiment(user_input) # Sentiment detection
emotion_result, cleaned_emotion = detect_emotion(user_input) # Emotion detection
suggestions = generate_suggestions(cleaned_emotion) # Fetch suggestions for emotion
professionals, map_html = get_health_professionals_and_map(location, query) # Nearby professionals with map
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
# Gradio Interface
custom_css = """
body { background: linear-gradient(135deg,#0d0d0d,#ff5722); color: white; }
textarea, input { background: black; color: white; border: 2px solid orange; padding: 10px }
"""
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1 style='text-align: center'>🌟 Well-Being Companion</h1>")
with gr.Row():
user_input = gr.Textbox(label="Your Message")
location = gr.Textbox(label="Your Location")
query = gr.Textbox(label="Search Query")
chatbot = gr.Chatbot(label="Chat History")
sentiment = gr.Textbox(label="Detected Sentiment")
emotion = gr.Textbox(label="Detected Emotion")
suggestions = gr.DataFrame(headers=["Title", "Link"])
professionals = gr.Textbox(label="Nearby Professionals", lines=6)
map_html = gr.HTML(label="Interactive Map")
submit = gr.Button("Submit")
submit.click(
app_function,
inputs=[user_input, location, query, chatbot],
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html]
)
app.launch()