File size: 8,114 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
fa97be4
9a5ce03
fb2aab1
 
dacc7c0
e3a3d3b
3631cca
334ba26
 
9a5ce03
494aa89
6858546
334ba26
494aa89
 
0e313c1
9a5ce03
4e61093
274d1f4
 
 
 
6858546
 
c69efb6
9a5ce03
9e5813b
 
 
 
 
e3a3d3b
fb2aab1
4e61093
a7c229b
936af04
e3a3d3b
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
9a5ce03
 
4184e5e
 
d9bd34f
 
e3a3d3b
6858546
 
 
4184e5e
 
fb2aab1
e3a3d3b
6858546
936af04
f0734be
9a5ce03
274d1f4
 
 
6858546
 
e3a3d3b
274d1f4
 
9a5ce03
274d1f4
 
a7c229b
90f35d6
e3a3d3b
 
 
 
 
 
90f35d6
9a5ce03
274d1f4
864d91e
9a5ce03
 
658d2e0
 
9a5ce03
e3a3d3b
a7c229b
658d2e0
 
9a5ce03
 
d9bd34f
 
9a5ce03
 
d9bd34f
 
9a5ce03
d9bd34f
 
fb2aab1
a7c229b
f9158d1
 
9a5ce03
 
37c8a73
9a5ce03
6858546
4e61093
9a5ce03
3631cca
 
9a5ce03
 
3631cca
 
 
 
f9158d1
a7c229b
3631cca
e3a3d3b
3631cca
 
 
 
 
a7c229b
9a5ce03
3631cca
9a5ce03
a7c229b
9a5ce03
e3a3d3b
9a5ce03
 
 
 
 
 
 
 
bdb69d5
9a5ce03
 
bdb69d5
 
 
9a5ce03
3631cca
9a5ce03
 
 
e3a3d3b
 
 
9a5ce03
e3a3d3b
 
9a5ce03
8b34069
9a5ce03
3631cca
9a5ce03
e3a3d3b
6858546
3631cca
658d2e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch

# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load intents and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Helper Functions
def bag_of_words(s, words):
    """Convert user input to bag-of-words vector."""
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def generate_chatbot_response(message, history):
    """Generate chatbot response and maintain conversation history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm sorry, I didn't understand that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    """Analyze sentiment and map to emojis."""
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return f"Sentiment: {sentiment_map[sentiment_class]}"

def detect_emotion(user_input):
    """Detect emotions based on input."""
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"].lower().strip()
    emotion_map = {
        "joy": "Joy 😊",
        "anger": "Anger 😠",
        "sadness": "Sadness 😒",
        "fear": "Fear 😨",
        "surprise": "Surprise 😲",
        "neutral": "Neutral 😐",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”"), emotion  # Text with matching key

def generate_suggestions(emotion):
    """Return relevant suggestions based on detected emotions."""
    emotion_key = emotion.lower()
    suggestions = {
        "joy": [
            ["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
            ["Emotional Toolkit", '<a href="https://www.nih.gov" target="_blank">Visit</a>'],
            ["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
        ],
        "anger": [
            ["Handle Anger", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
            ["Stress Tips", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
        ],
        "fear": [
            ["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
            ["Mindfulness", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'],
        ],
        "sadness": [
            ["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'],
        ],
        "surprise": [
            ["Managing Surprises", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
        ],
        "neutral": [
            ["General Well-Being Tips", '<a href="https://www.psychologytoday.com" target="_blank">Visit</a>'],
        ],
    }
    return suggestions.get(emotion_key, [["No specific suggestions available.", ""]])

def get_health_professionals_and_map(location, query):
    """Search nearby healthcare professionals using Google Maps API."""
    try:
        if not location or not query:
            return ["Please provide both location and query."], ""

        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                professionals.append(f"{place['name']} - {place.get('vicinity', 'No address provided')}")
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()

        return ["No professionals found for the given location."], ""
    except Exception as e:
        return [f"An error occurred: {e}"], ""

# Main Application Logic
def app_function(user_input, location, query, history):
    chatbot_history, _ = generate_chatbot_response(user_input, history)  # Generate chatbot response
    sentiment_result = analyze_sentiment(user_input)  # Sentiment detection
    emotion_result, cleaned_emotion = detect_emotion(user_input)  # Emotion detection
    suggestions = generate_suggestions(cleaned_emotion)  # Fetch suggestions for emotion
    professionals, map_html = get_health_professionals_and_map(location, query)  # Nearby professionals with map
    return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html

# Gradio Interface
custom_css = """
body { background: linear-gradient(135deg,#0d0d0d,#ff5722); color: white; }
textarea, input { background: black; color: white; border: 2px solid orange; padding: 10px }
"""

with gr.Blocks(css=custom_css) as app:
    gr.HTML("<h1 style='text-align: center'>🌟 Well-Being Companion</h1>")
    with gr.Row():
        user_input = gr.Textbox(label="Your Message")
        location = gr.Textbox(label="Your Location")
        query = gr.Textbox(label="Search Query")
    chatbot = gr.Chatbot(label="Chat History")
    sentiment = gr.Textbox(label="Detected Sentiment")
    emotion = gr.Textbox(label="Detected Emotion")
    suggestions = gr.DataFrame(headers=["Title", "Link"])
    professionals = gr.Textbox(label="Nearby Professionals", lines=6)
    map_html = gr.HTML(label="Interactive Map")
    submit = gr.Button("Submit")

    submit.click(
        app_function,
        inputs=[user_input, location, query, chatbot],
        outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html]
    )

app.launch()