Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,15 +13,15 @@ import googlemaps
|
|
13 |
import folium
|
14 |
import torch
|
15 |
|
16 |
-
#
|
17 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
18 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
19 |
-
nltk.download("punkt")
|
20 |
|
21 |
-
#
|
|
|
22 |
stemmer = LancasterStemmer()
|
23 |
|
24 |
-
# Load
|
25 |
with open("intents.json") as file:
|
26 |
intents_data = json.load(file)
|
27 |
|
@@ -37,17 +37,16 @@ net = tflearn.regression(net)
|
|
37 |
chatbot_model = tflearn.DNN(net)
|
38 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
39 |
|
40 |
-
#
|
41 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
42 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
43 |
-
|
44 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
45 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
46 |
|
47 |
-
# Google Maps API
|
48 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
49 |
|
50 |
-
#
|
51 |
def bag_of_words(s, words):
|
52 |
bag = [0] * len(words)
|
53 |
s_words = word_tokenize(s)
|
@@ -58,8 +57,9 @@ def bag_of_words(s, words):
|
|
58 |
bag[i] = 1
|
59 |
return np.array(bag)
|
60 |
|
|
|
61 |
def chatbot(message, history):
|
62 |
-
"""Generate a chatbot response and
|
63 |
history = history or []
|
64 |
try:
|
65 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
@@ -74,8 +74,9 @@ def chatbot(message, history):
|
|
74 |
history.append((message, response))
|
75 |
return history, response
|
76 |
|
|
|
77 |
def analyze_sentiment(user_input):
|
78 |
-
"""
|
79 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
80 |
with torch.no_grad():
|
81 |
outputs = model_sentiment(**inputs)
|
@@ -83,8 +84,9 @@ def analyze_sentiment(user_input):
|
|
83 |
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
|
84 |
return sentiment_map[sentiment_class]
|
85 |
|
|
|
86 |
def detect_emotion(user_input):
|
87 |
-
"""Detect user emotion
|
88 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
89 |
result = pipe(user_input)
|
90 |
emotion = result[0]['label'].lower()
|
@@ -96,82 +98,130 @@ def detect_emotion(user_input):
|
|
96 |
"surprise": "π² Surprise",
|
97 |
"neutral": "π Neutral"
|
98 |
}
|
99 |
-
return emotion_map.get(emotion, "Unknown π€")
|
100 |
|
|
|
101 |
def generate_suggestions(emotion):
|
102 |
-
"""
|
103 |
suggestions = {
|
104 |
"joy": [
|
105 |
-
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation
|
106 |
-
["
|
107 |
-
["
|
|
|
108 |
],
|
109 |
"anger": [
|
110 |
-
["
|
111 |
-
["
|
112 |
],
|
113 |
"fear": [
|
114 |
-
["Coping with Anxiety", '<a href="https://www.helpguide.org" target="_blank">Visit</a>'],
|
115 |
-
["Mindfulness
|
116 |
],
|
117 |
"sadness": [
|
118 |
-
["
|
119 |
],
|
120 |
"surprise": [
|
121 |
-
["Stress
|
|
|
122 |
]
|
123 |
}
|
124 |
-
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
|
125 |
|
|
|
126 |
def get_health_professionals_and_map(location, query):
|
127 |
-
"""
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def app_function(user_input, location, query, history):
|
145 |
-
chatbot_history,
|
146 |
sentiment = analyze_sentiment(user_input)
|
147 |
emotion = detect_emotion(user_input)
|
148 |
suggestions = generate_suggestions(emotion)
|
149 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
150 |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
|
151 |
|
152 |
-
# CSS for
|
153 |
custom_css = """
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
"""
|
157 |
|
158 |
-
# Gradio
|
159 |
with gr.Blocks(css=custom_css) as app:
|
160 |
-
gr.
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
171 |
|
|
|
172 |
submit_button.click(
|
173 |
-
app_function,
|
174 |
-
inputs=[
|
175 |
-
outputs=[chatbot_history,
|
176 |
)
|
|
|
177 |
app.launch()
|
|
|
13 |
import folium
|
14 |
import torch
|
15 |
|
16 |
+
# Suppress TensorFlow GPU usage and warnings
|
17 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
18 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
19 |
|
20 |
+
# Download NLTK resources
|
21 |
+
nltk.download("punkt")
|
22 |
stemmer = LancasterStemmer()
|
23 |
|
24 |
+
# Load chatbot training data
|
25 |
with open("intents.json") as file:
|
26 |
intents_data = json.load(file)
|
27 |
|
|
|
37 |
chatbot_model = tflearn.DNN(net)
|
38 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
39 |
|
40 |
+
# Hugging Face sentiment and emotion models
|
41 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
42 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
|
|
43 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
44 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
45 |
|
46 |
+
# Google Maps API Client
|
47 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
48 |
|
49 |
+
# Bag of Words Helper Function for Chatbot
|
50 |
def bag_of_words(s, words):
|
51 |
bag = [0] * len(words)
|
52 |
s_words = word_tokenize(s)
|
|
|
57 |
bag[i] = 1
|
58 |
return np.array(bag)
|
59 |
|
60 |
+
# Chatbot Function
|
61 |
def chatbot(message, history):
|
62 |
+
"""Generate a chatbot response and append to the chat history."""
|
63 |
history = history or []
|
64 |
try:
|
65 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
|
|
74 |
history.append((message, response))
|
75 |
return history, response
|
76 |
|
77 |
+
# Sentiment Analysis
|
78 |
def analyze_sentiment(user_input):
|
79 |
+
"""Analyze sentiment from user input."""
|
80 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
81 |
with torch.no_grad():
|
82 |
outputs = model_sentiment(**inputs)
|
|
|
84 |
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
|
85 |
return sentiment_map[sentiment_class]
|
86 |
|
87 |
+
# Emotion Detection
|
88 |
def detect_emotion(user_input):
|
89 |
+
"""Detect user emotion with an emoji."""
|
90 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
91 |
result = pipe(user_input)
|
92 |
emotion = result[0]['label'].lower()
|
|
|
98 |
"surprise": "π² Surprise",
|
99 |
"neutral": "π Neutral"
|
100 |
}
|
101 |
+
return emotion_map.get(emotion, "Unknown Emotion π€")
|
102 |
|
103 |
+
# Generate Suggestions for Emotion
|
104 |
def generate_suggestions(emotion):
|
105 |
+
"""Return suggestions for the detected emotion."""
|
106 |
suggestions = {
|
107 |
"joy": [
|
108 |
+
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
|
109 |
+
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
|
110 |
+
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
|
111 |
+
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
|
112 |
],
|
113 |
"anger": [
|
114 |
+
["Emotional Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
|
115 |
+
["Calming Activities", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
|
116 |
],
|
117 |
"fear": [
|
118 |
+
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
|
119 |
+
["Mindfulness Practices", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
|
120 |
],
|
121 |
"sadness": [
|
122 |
+
["Stress Management", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
|
123 |
],
|
124 |
"surprise": [
|
125 |
+
["Managing Stress", '<a href="https://www.health.harvard.edu/" target="_blank">Visit</a>'],
|
126 |
+
["Relaxation Help", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
|
127 |
]
|
128 |
}
|
129 |
+
return suggestions.get(emotion.lower(), [["No suggestions are available.", ""]])
|
130 |
|
131 |
+
# Search for Nearby Professionals and Generate Map
|
132 |
def get_health_professionals_and_map(location, query):
|
133 |
+
"""Search nearby healthcare professionals and display a map."""
|
134 |
+
try:
|
135 |
+
if not location or not query:
|
136 |
+
return ["Please provide a valid location and query."], ""
|
137 |
+
|
138 |
+
geo_location = gmaps.geocode(location)
|
139 |
+
if geo_location:
|
140 |
+
lat, lng = geo_location[0]["geometry"]["location"].values()
|
141 |
+
|
142 |
+
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
|
143 |
+
|
144 |
+
professionals = []
|
145 |
+
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
146 |
+
for place in places_result:
|
147 |
+
professionals.append(f"{place['name']} - {place.get('vicinity', 'No address available')}")
|
148 |
+
folium.Marker(
|
149 |
+
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
150 |
+
popup=f"{place['name']}"
|
151 |
+
).add_to(map_)
|
152 |
+
return professionals, map_._repr_html_()
|
153 |
+
|
154 |
+
return ["No professionals found for the given location."], ""
|
155 |
+
except googlemaps.exceptions.HTTPError as e:
|
156 |
+
return [f"Google Maps API Error: {str(e)}"], ""
|
157 |
+
except Exception as e:
|
158 |
+
return [f"An error occurred: {str(e)}"], ""
|
159 |
+
|
160 |
+
# Main App Logic
|
161 |
def app_function(user_input, location, query, history):
|
162 |
+
chatbot_history, response = chatbot(user_input, history)
|
163 |
sentiment = analyze_sentiment(user_input)
|
164 |
emotion = detect_emotion(user_input)
|
165 |
suggestions = generate_suggestions(emotion)
|
166 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
167 |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
|
168 |
|
169 |
+
# Custom CSS for Dark Theme and Gradient Buttons
|
170 |
custom_css = """
|
171 |
+
body {
|
172 |
+
background: linear-gradient(135deg, #000, #ff5722);
|
173 |
+
font-family: 'Roboto', sans-serif;
|
174 |
+
color: white;
|
175 |
+
}
|
176 |
+
button {
|
177 |
+
background: linear-gradient(45deg, #ff5722, #ff9800) !important;
|
178 |
+
border: 0;
|
179 |
+
border-radius: 8px;
|
180 |
+
padding: 12px 20px;
|
181 |
+
cursor: pointer;
|
182 |
+
color: white;
|
183 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
|
184 |
+
}
|
185 |
+
button:hover {
|
186 |
+
background: linear-gradient(45deg, #ff9800, #ff5722) !important;
|
187 |
+
}
|
188 |
+
textarea, input {
|
189 |
+
background: black !important;
|
190 |
+
color: white !important;
|
191 |
+
padding: 12px;
|
192 |
+
border: 1px solid #ff5722 !important;
|
193 |
+
border-radius: 8px;
|
194 |
+
}
|
195 |
+
.gr-dataframe {
|
196 |
+
background-color: black !important;
|
197 |
+
color: white !important;
|
198 |
+
overflow-y: scroll;
|
199 |
+
height: 300px;
|
200 |
+
}
|
201 |
"""
|
202 |
|
203 |
+
# Gradio Interface
|
204 |
with gr.Blocks(css=custom_css) as app:
|
205 |
+
gr.HTML("<h1 style='text-align: center;'>π Well-Being Companion</h1>")
|
206 |
+
gr.HTML("<h3 style='text-align: center;'>Empowering Your Mental Health Journey π</h3>")
|
207 |
+
|
208 |
+
with gr.Row():
|
209 |
+
user_message = gr.Textbox(label="Your Message", placeholder="Type your message...")
|
210 |
+
location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
|
211 |
+
query = gr.Textbox(label="Search Query", placeholder="e.g., therapist, doctor")
|
212 |
+
|
213 |
+
chatbot_history = gr.Chatbot(label="Chat History")
|
214 |
+
sentiment_output = gr.Textbox(label="Detected Sentiment")
|
215 |
+
emotion_output = gr.Textbox(label="Detected Emotion")
|
216 |
+
suggestions_output = gr.DataFrame(headers=["Title", "Link"], label="Suggestions")
|
217 |
+
map_html_output = gr.HTML(label="Map of Nearby Health Professionals")
|
218 |
+
professionals_output = gr.Textbox(label="Nearby Professionals", lines=5)
|
219 |
|
220 |
+
submit_button = gr.Button("Submit")
|
221 |
submit_button.click(
|
222 |
+
app_function,
|
223 |
+
inputs=[user_message, location, query, chatbot_history],
|
224 |
+
outputs=[chatbot_history, sentiment_output, emotion_output, suggestions_output, professionals_output, map_html_output]
|
225 |
)
|
226 |
+
|
227 |
app.launch()
|