Testing / app.py
DreamStream-1's picture
Update app.py
a7c229b verified
raw
history blame
8.96 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Suppress TensorFlow GPU usage and warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Ensure necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load chatbot intents and training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face emotion and sentiment detection models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Initialize Google Maps API client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Helper Functions
def bag_of_words(s, words):
"""Convert user input into bag-of-words vector."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot response logic
def chatbot(message, history):
"""Generate chatbot response and update chat history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm sorry, I'm not sure how to respond. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response)) # Append to the chatbot history
return history, response
# Sentiment detection function
def analyze_sentiment(user_input):
"""Analyze sentiment and return emoji-mapped sentiment."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment_class]
# Emotion detection function
def detect_emotion(user_input):
"""Detect emotion from user input using Hugging Face emotion model."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "😊 Joy",
"anger": "😠 Anger",
"sadness": "😒 Sadness",
"fear": "😨 Fear",
"surprise": "😲 Surprise",
"neutral": "😐 Neutral",
}
return emotion_map.get(emotion, "Unknown πŸ€”")
# Generate suggestions based on emotion
def generate_suggestions(emotion):
"""Generate resources and videos to help based on the emotion detected."""
emotion_key = emotion.lower()
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
["Emotional Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
],
"anger": [
["Calming Techniques", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
["Manage Anger", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
],
"fear": [
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Mindfulness Meditation", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'],
],
"sadness": [
["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'],
],
"surprise": [
["Managing Surprises", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"neutral": [
["General Tips", '<a href="https://www.psychologytoday.com" target="_blank">Read More</a>']
],
}
return suggestions.get(emotion_key, [["No specific suggestions available.", ""]])
# Google Maps integration
def get_health_professionals_and_map(location, query):
"""Search nearby health professionals and generate map."""
try:
if not location or not query:
return ["Please provide a valid location and query."], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', 'No address available')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found."], ""
except Exception as e:
return [f"Error: {e}"], ""
# Main application logic
def app_function(user_message, location, query, history):
chatbot_history, _ = chatbot(user_message, history)
sentiment = analyze_sentiment(user_message) # Sentiment detection
emotion = detect_emotion(user_message) # Emotion detection
suggestions = generate_suggestions(emotion) # Get emotion-based suggestions
professionals, map_html = get_health_professionals_and_map(location, query) # Google Maps integration
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Custom CSS
custom_css = """
body {
background: linear-gradient(135deg, #000, #ff5722);
font-family: 'Roboto', sans-serif;
color: white;
}
h1 {
font-size: 4.5rem;
font-weight: bold;
text-align: center;
color: white;
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.4);
}
h2 {
font-size: 2rem;
text-align: center;
font-weight: lighter;
color: white;
margin-bottom: 30px;
}
.button {
background: linear-gradient(45deg, #ff5722, #ff9800) !important;
border: none !important;
padding: 12px 20px;
border-radius: 8px;
color: white !important;
cursor: pointer;
font-size: 16px;
}
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
gr.HTML("<h2>Empowering Your Mental Health Journey πŸ’š</h2>")
with gr.Row():
user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
location = gr.Textbox(label="Your Location", placeholder="Enter location...")
query = gr.Textbox(label="Search Query", placeholder="e.g., therapist")
chatbot_history = gr.Chatbot(label="Chat History")
sentiment_output = gr.Textbox(label="Detected Sentiment")
emotion_output = gr.Textbox(label="Detected Emotion")
suggestions_output = gr.DataFrame(headers=["Title", "Link"], label="Suggestions")
professionals_output = gr.Textbox(label="Nearby Professionals", lines=5)
map_output = gr.HTML(label="Interactive Map")
submit_button = gr.Button("Submit")
submit_button.click(
app_function,
inputs=[user_message, location, query, chatbot_history],
outputs=[chatbot_history, sentiment_output, emotion_output, suggestions_output, professionals_output, map_output],
)
app.launch()