Spaces:
Sleeping
Sleeping
File size: 8,963 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 59c582d fb2aab1 dacc7c0 a7c229b 3631cca 334ba26 a7c229b 494aa89 6858546 334ba26 494aa89 0e313c1 f9158d1 4e61093 274d1f4 6858546 c69efb6 a7c229b 9e5813b a7c229b fb2aab1 4e61093 a7c229b 936af04 a7c229b 4e61093 4184e5e 6858546 936af04 4525308 a7c229b 274d1f4 a7c229b 4184e5e d9bd34f a7c229b 6858546 4184e5e fb2aab1 a7c229b 6858546 936af04 a7c229b f0734be a7c229b 274d1f4 6858546 274d1f4 a7c229b 274d1f4 a7c229b 274d1f4 a7c229b 90f35d6 a7c229b 90f35d6 fb2aab1 274d1f4 a7c229b 864d91e a7c229b 658d2e0 3631cca a7c229b 658d2e0 a7c229b d9bd34f 3631cca a7c229b d9bd34f fb2aab1 d9bd34f fb2aab1 a7c229b f9158d1 a7c229b fb2aab1 37c8a73 a7c229b 6858546 a7c229b 4e61093 a7c229b 3631cca a7c229b 3631cca a7c229b f9158d1 a7c229b 3631cca a7c229b 3631cca a7c229b 90f35d6 4568d77 f9158d1 bdb69d5 3631cca f9158d1 3631cca 59c582d a7c229b 59c582d a7c229b 59c582d f9158d1 59c582d f9158d1 a7c229b 59c582d a7c229b 59c582d a7c229b 3631cca a7c229b f9158d1 a7c229b 59c582d f9158d1 3631cca bdb69d5 59c582d bdb69d5 59c582d f9158d1 3631cca a7c229b f9158d1 a7c229b 3631cca f9158d1 8b34069 3631cca 8b34069 3631cca a7c229b 6858546 3631cca 658d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Suppress TensorFlow GPU usage and warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Ensure necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load chatbot intents and training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face emotion and sentiment detection models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Initialize Google Maps API client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Helper Functions
def bag_of_words(s, words):
"""Convert user input into bag-of-words vector."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot response logic
def chatbot(message, history):
"""Generate chatbot response and update chat history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm sorry, I'm not sure how to respond. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response)) # Append to the chatbot history
return history, response
# Sentiment detection function
def analyze_sentiment(user_input):
"""Analyze sentiment and return emoji-mapped sentiment."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment_class]
# Emotion detection function
def detect_emotion(user_input):
"""Detect emotion from user input using Hugging Face emotion model."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "π Joy",
"anger": "π Anger",
"sadness": "π’ Sadness",
"fear": "π¨ Fear",
"surprise": "π² Surprise",
"neutral": "π Neutral",
}
return emotion_map.get(emotion, "Unknown π€")
# Generate suggestions based on emotion
def generate_suggestions(emotion):
"""Generate resources and videos to help based on the emotion detected."""
emotion_key = emotion.lower()
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
["Emotional Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
],
"anger": [
["Calming Techniques", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
["Manage Anger", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
],
"fear": [
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Mindfulness Meditation", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'],
],
"sadness": [
["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'],
],
"surprise": [
["Managing Surprises", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"neutral": [
["General Tips", '<a href="https://www.psychologytoday.com" target="_blank">Read More</a>']
],
}
return suggestions.get(emotion_key, [["No specific suggestions available.", ""]])
# Google Maps integration
def get_health_professionals_and_map(location, query):
"""Search nearby health professionals and generate map."""
try:
if not location or not query:
return ["Please provide a valid location and query."], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', 'No address available')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found."], ""
except Exception as e:
return [f"Error: {e}"], ""
# Main application logic
def app_function(user_message, location, query, history):
chatbot_history, _ = chatbot(user_message, history)
sentiment = analyze_sentiment(user_message) # Sentiment detection
emotion = detect_emotion(user_message) # Emotion detection
suggestions = generate_suggestions(emotion) # Get emotion-based suggestions
professionals, map_html = get_health_professionals_and_map(location, query) # Google Maps integration
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Custom CSS
custom_css = """
body {
background: linear-gradient(135deg, #000, #ff5722);
font-family: 'Roboto', sans-serif;
color: white;
}
h1 {
font-size: 4.5rem;
font-weight: bold;
text-align: center;
color: white;
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.4);
}
h2 {
font-size: 2rem;
text-align: center;
font-weight: lighter;
color: white;
margin-bottom: 30px;
}
.button {
background: linear-gradient(45deg, #ff5722, #ff9800) !important;
border: none !important;
padding: 12px 20px;
border-radius: 8px;
color: white !important;
cursor: pointer;
font-size: 16px;
}
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1>π Well-Being Companion</h1>")
gr.HTML("<h2>Empowering Your Mental Health Journey π</h2>")
with gr.Row():
user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
location = gr.Textbox(label="Your Location", placeholder="Enter location...")
query = gr.Textbox(label="Search Query", placeholder="e.g., therapist")
chatbot_history = gr.Chatbot(label="Chat History")
sentiment_output = gr.Textbox(label="Detected Sentiment")
emotion_output = gr.Textbox(label="Detected Emotion")
suggestions_output = gr.DataFrame(headers=["Title", "Link"], label="Suggestions")
professionals_output = gr.Textbox(label="Nearby Professionals", lines=5)
map_output = gr.HTML(label="Interactive Map")
submit_button = gr.Button("Submit")
submit_button.click(
app_function,
inputs=[user_message, location, query, chatbot_history],
outputs=[chatbot_history, sentiment_output, emotion_output, suggestions_output, professionals_output, map_output],
)
app.launch() |