File size: 8,963 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
fa97be4
59c582d
fb2aab1
 
dacc7c0
a7c229b
3631cca
334ba26
 
a7c229b
494aa89
6858546
334ba26
494aa89
 
0e313c1
f9158d1
4e61093
274d1f4
 
 
 
6858546
 
c69efb6
a7c229b
9e5813b
 
 
 
 
a7c229b
fb2aab1
4e61093
a7c229b
936af04
a7c229b
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
a7c229b
274d1f4
a7c229b
4184e5e
 
d9bd34f
 
a7c229b
6858546
 
 
4184e5e
 
fb2aab1
a7c229b
6858546
936af04
a7c229b
f0734be
a7c229b
274d1f4
 
 
6858546
 
 
274d1f4
a7c229b
274d1f4
a7c229b
274d1f4
 
a7c229b
90f35d6
 
 
 
 
 
a7c229b
90f35d6
fb2aab1
274d1f4
a7c229b
864d91e
a7c229b
 
658d2e0
 
3631cca
a7c229b
 
658d2e0
 
a7c229b
 
d9bd34f
 
3631cca
a7c229b
d9bd34f
 
fb2aab1
d9bd34f
 
fb2aab1
a7c229b
f9158d1
 
a7c229b
fb2aab1
37c8a73
a7c229b
6858546
a7c229b
4e61093
a7c229b
3631cca
 
a7c229b
 
3631cca
 
 
 
a7c229b
f9158d1
a7c229b
3631cca
 
 
 
 
 
 
a7c229b
 
3631cca
a7c229b
 
 
 
 
 
 
 
 
90f35d6
4568d77
f9158d1
bdb69d5
3631cca
f9158d1
3631cca
 
 
59c582d
a7c229b
59c582d
 
a7c229b
 
59c582d
f9158d1
59c582d
f9158d1
a7c229b
59c582d
a7c229b
59c582d
a7c229b
3631cca
a7c229b
f9158d1
a7c229b
 
59c582d
f9158d1
3631cca
bdb69d5
 
59c582d
bdb69d5
59c582d
f9158d1
3631cca
 
a7c229b
f9158d1
a7c229b
3631cca
 
 
 
f9158d1
 
 
8b34069
3631cca
8b34069
3631cca
 
a7c229b
6858546
3631cca
658d2e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch

# Suppress TensorFlow GPU usage and warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

# Ensure necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load chatbot intents and training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Hugging Face emotion and sentiment detection models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Initialize Google Maps API client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Helper Functions
def bag_of_words(s, words):
    """Convert user input into bag-of-words vector."""
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chatbot response logic
def chatbot(message, history):
    """Generate chatbot response and update chat history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm sorry, I'm not sure how to respond. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))  # Append to the chatbot history
    return history, response

# Sentiment detection function
def analyze_sentiment(user_input):
    """Analyze sentiment and return emoji-mapped sentiment."""
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return sentiment_map[sentiment_class]

# Emotion detection function
def detect_emotion(user_input):
    """Detect emotion from user input using Hugging Face emotion model."""
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"].lower().strip()
    emotion_map = {
        "joy": "😊 Joy",
        "anger": "😠 Anger",
        "sadness": "😒 Sadness",
        "fear": "😨 Fear",
        "surprise": "😲 Surprise",
        "neutral": "😐 Neutral",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”")

# Generate suggestions based on emotion
def generate_suggestions(emotion):
    """Generate resources and videos to help based on the emotion detected."""
    emotion_key = emotion.lower()
    suggestions = {
        "joy": [
            ["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
            ["Emotional Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
        ],
        "anger": [
            ["Calming Techniques", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
            ["Manage Anger", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
        ],
        "fear": [
            ["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
            ["Mindfulness Meditation", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'],
        ],
        "sadness": [
            ["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'],
        ],
        "surprise": [
            ["Managing Surprises", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
        ],
        "neutral": [
            ["General Tips", '<a href="https://www.psychologytoday.com" target="_blank">Read More</a>']
        ],
    }
    return suggestions.get(emotion_key, [["No specific suggestions available.", ""]])

# Google Maps integration
def get_health_professionals_and_map(location, query):
    """Search nearby health professionals and generate map."""
    try:
        if not location or not query:
            return ["Please provide a valid location and query."], ""

        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]

            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                professionals.append(f"{place['name']} - {place.get('vicinity', 'No address available')}")
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()

        return ["No professionals found."], ""
    except Exception as e:
        return [f"Error: {e}"], ""

# Main application logic
def app_function(user_message, location, query, history):
    chatbot_history, _ = chatbot(user_message, history)
    sentiment = analyze_sentiment(user_message)  # Sentiment detection
    emotion = detect_emotion(user_message)  # Emotion detection
    suggestions = generate_suggestions(emotion)  # Get emotion-based suggestions
    professionals, map_html = get_health_professionals_and_map(location, query)  # Google Maps integration
    return chatbot_history, sentiment, emotion, suggestions, professionals, map_html

# Custom CSS
custom_css = """
body {
    background: linear-gradient(135deg, #000, #ff5722);
    font-family: 'Roboto', sans-serif;
    color: white;
}
h1 {
    font-size: 4.5rem;
    font-weight: bold;
    text-align: center;
    color: white;
    text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.4);
}
h2 {
    font-size: 2rem;
    text-align: center;
    font-weight: lighter;
    color: white;
    margin-bottom: 30px;
}
.button {
    background: linear-gradient(45deg, #ff5722, #ff9800) !important;
    border: none !important;
    padding: 12px 20px;
    border-radius: 8px;
    color: white !important;
    cursor: pointer;
    font-size: 16px;
}
"""

# Gradio Application
with gr.Blocks(css=custom_css) as app:
    gr.HTML("<h1>🌟 Well-Being Companion</h1>")
    gr.HTML("<h2>Empowering Your Mental Health Journey πŸ’š</h2>")

    with gr.Row():
        user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
        location = gr.Textbox(label="Your Location", placeholder="Enter location...")
        query = gr.Textbox(label="Search Query", placeholder="e.g., therapist")

    chatbot_history = gr.Chatbot(label="Chat History")
    sentiment_output = gr.Textbox(label="Detected Sentiment")
    emotion_output = gr.Textbox(label="Detected Emotion")
    suggestions_output = gr.DataFrame(headers=["Title", "Link"], label="Suggestions")
    professionals_output = gr.Textbox(label="Nearby Professionals", lines=5)
    map_output = gr.HTML(label="Interactive Map")

    submit_button = gr.Button("Submit")
    submit_button.click(
        app_function,
        inputs=[user_message, location, query, chatbot_history],
        outputs=[chatbot_history, sentiment_output, emotion_output, suggestions_output, professionals_output, map_output],
    )

app.launch()