Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import nltk | |
import numpy as np | |
import tflearn | |
import random | |
import json | |
import pickle | |
from nltk.tokenize import word_tokenize | |
from nltk.stem.lancaster import LancasterStemmer | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import googlemaps | |
import folium | |
import torch | |
# Disable GPU usage for TensorFlow and suppress TensorFlow warnings | |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' | |
# Download NLTK resources | |
nltk.download("punkt") | |
# Initialize Lancaster Stemmer | |
stemmer = LancasterStemmer() | |
# Load intents.json and training data for the chatbot | |
with open("intents.json") as file: | |
intents_data = json.load(file) | |
with open("data.pickle", "rb") as f: | |
words, labels, training, output = pickle.load(f) | |
# Build the chatbot's neural network model | |
net = tflearn.input_data(shape=[None, len(training[0])]) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") | |
net = tflearn.regression(net) | |
chatbot_model = tflearn.DNN(net) | |
chatbot_model.load("MentalHealthChatBotmodel.tflearn") | |
# Hugging Face models for sentiment and emotion detection | |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
# Google Maps API client | |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY')) | |
# Chatbot logic | |
def bag_of_words(s, words): | |
bag = [0] * len(words) | |
s_words = word_tokenize(s) | |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()] | |
for se in s_words: | |
for i, w in enumerate(words): | |
if w == se: | |
bag[i] = 1 | |
return np.array(bag) | |
def chatbot(message, history): | |
history = history or [] | |
try: | |
results = chatbot_model.predict([bag_of_words(message, words)]) | |
tag = labels[np.argmax(results)] | |
response = "I'm not sure how to respond to that. π€" | |
for intent in intents_data["intents"]: | |
if intent["tag"] == tag: | |
response = random.choice(intent["responses"]) | |
break | |
except Exception as e: | |
response = f"Error: {str(e)} π₯" | |
history.append({"role": "user", "content": message}) | |
history.append({"role": "assistant", "content": response}) | |
return history, response | |
# Sentiment analysis | |
def analyze_sentiment(user_input): | |
inputs = tokenizer_sentiment(user_input, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_sentiment(**inputs) | |
sentiment_class = torch.argmax(outputs.logits, dim=1).item() | |
sentiment_map = ["Negative π", "Neutral π", "Positive π"] | |
return sentiment_map[sentiment_class] | |
# Emotion detection | |
def detect_emotion(user_input): | |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) | |
result = pipe(user_input) | |
emotion = result[0]["label"] | |
return emotion | |
# Generate suggestions based on detected emotion | |
def generate_suggestions(emotion): | |
suggestions = { | |
"joy": [ | |
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'], | |
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'], | |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'], | |
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'], | |
], | |
"anger": [ | |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'], | |
["Stress Management Tips", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'], | |
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'], | |
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'], | |
], | |
} | |
return suggestions.get(emotion, [["No suggestions available", "", ""]]) | |
# Search professionals and generate map | |
def get_health_professionals_and_map(location, query): | |
try: | |
geo_location = gmaps.geocode(location) | |
if geo_location: | |
lat, lng = geo_location[0]["geometry"]["location"].values() | |
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"] | |
map_ = folium.Map(location=(lat, lng), zoom_start=13) | |
professionals = [] | |
for place in places_result: | |
professionals.append(f"{place['name']} - {place.get('vicinity', '')}") | |
folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]], | |
popup=place["name"]).add_to(map_) | |
return professionals, map_._repr_html_() | |
return ["No professionals found"], "" | |
except Exception as e: | |
return [f"Error: {e}"], "" | |
# Main app function | |
def app_function(message, location, query, history): | |
chatbot_history, _ = chatbot(message, history) | |
sentiment = analyze_sentiment(message) | |
emotion = detect_emotion(message.lower()) | |
suggestions = generate_suggestions(emotion) | |
professionals, map_html = get_health_professionals_and_map(location, query) | |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html | |
# Gradio app interface | |
with gr.Blocks() as app: | |
gr.Markdown("# π Well-Being Companion") | |
gr.Markdown("Empowering your Well-Being journey π") | |
with gr.Row(): | |
user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...") | |
user_location = gr.Textbox(label="Your Location", placeholder="Enter your location...") | |
search_query = gr.Textbox(label="Query", placeholder="Search for professionals...") | |
submit_btn = gr.Button("Submit") | |
chatbot_box = gr.Chatbot(label="Chat History") | |
emotion_output = gr.Textbox(label="Detected Emotion") | |
sentiment_output = gr.Textbox(label="Detected Sentiment") | |
suggestions_output = gr.DataFrame(headers=["Title", "Links"], label="Suggestions") | |
map_output = gr.HTML(label="Nearby Professionals Map") | |
professional_list = gr.Textbox(label="Nearby Professionals", lines=5) | |
submit_btn.click( | |
app_function, | |
inputs=[user_message, user_location, search_query, chatbot_box], | |
outputs=[ | |
chatbot_box, sentiment_output, emotion_output, | |
suggestions_output, professional_list, map_output, | |
], | |
) | |
app.launch() |