Spaces:
Sleeping
Sleeping
File size: 7,160 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 d30f6a2 274d1f4 d30f6a2 eefcaa7 d30f6a2 6858546 dacc7c0 d30f6a2 334ba26 d30f6a2 494aa89 6858546 334ba26 494aa89 0e313c1 658d2e0 4e61093 274d1f4 6858546 c69efb6 658d2e0 9e5813b 658d2e0 4e61093 658d2e0 936af04 4e61093 4184e5e 6858546 936af04 4525308 274d1f4 4184e5e 6858546 4e61093 6858546 4184e5e 6858546 9508310 6858546 936af04 658d2e0 f0734be 274d1f4 6858546 274d1f4 658d2e0 274d1f4 6858546 658d2e0 274d1f4 658d2e0 864d91e 658d2e0 d30f6a2 658d2e0 d30f6a2 658d2e0 37c8a73 d30f6a2 6858546 d30f6a2 4e61093 658d2e0 4e61093 658d2e0 4e61093 d30f6a2 4e61093 d30f6a2 6858546 658d2e0 6858546 d30f6a2 4568d77 658d2e0 4e61093 d30f6a2 658d2e0 4568d77 658d2e0 d30f6a2 658d2e0 d30f6a2 658d2e0 6858546 658d2e0 4e61093 d30f6a2 4e61093 6858546 658d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow and suppress TensorFlow warnings
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Download NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load intents.json and training data for the chatbot
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot's neural network model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face models for sentiment and emotion detection
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Chatbot logic
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chatbot(message, history):
history = history or []
try:
results = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(results)]
response = "I'm not sure how to respond to that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)} π₯"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, response
# Sentiment analysis
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment_class]
# Emotion detection
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"]
return emotion
# Generate suggestions based on detected emotion
def generate_suggestions(emotion):
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"anger": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Stress Management Tips", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
],
}
return suggestions.get(emotion, [["No suggestions available", "", ""]])
# Search professionals and generate map
def get_health_professionals_and_map(location, query):
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
map_ = folium.Map(location=(lat, lng), zoom_start=13)
professionals = []
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found"], ""
except Exception as e:
return [f"Error: {e}"], ""
# Main app function
def app_function(message, location, query, history):
chatbot_history, _ = chatbot(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message.lower())
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Gradio app interface
with gr.Blocks() as app:
gr.Markdown("# π Well-Being Companion")
gr.Markdown("Empowering your Well-Being journey π")
with gr.Row():
user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
user_location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
search_query = gr.Textbox(label="Query", placeholder="Search for professionals...")
submit_btn = gr.Button("Submit")
chatbot_box = gr.Chatbot(label="Chat History")
emotion_output = gr.Textbox(label="Detected Emotion")
sentiment_output = gr.Textbox(label="Detected Sentiment")
suggestions_output = gr.DataFrame(headers=["Title", "Links"], label="Suggestions")
map_output = gr.HTML(label="Nearby Professionals Map")
professional_list = gr.Textbox(label="Nearby Professionals", lines=5)
submit_btn.click(
app_function,
inputs=[user_message, user_location, search_query, chatbot_box],
outputs=[
chatbot_box, sentiment_output, emotion_output,
suggestions_output, professional_list, map_output,
],
)
app.launch() |