Testing / app.py
DreamStream-1's picture
Update app.py
d6152ea verified
raw
history blame
12 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # No GPU available, use CPU only
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # Suppress TensorFlow logging
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Disease Prediction Code
def load_data():
try:
df = pd.read_csv("Training.csv")
tr = pd.read_csv("Testing.csv")
except FileNotFoundError:
raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")
disease_dict = {
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
'Peptic ulcer diseae': 5, 'AIDS': 6, 'Diabetes': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
'Hypertension': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis': 13,
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18,
'Hepatitis A': 19, 'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23,
'Alcoholic hepatitis': 24, 'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27,
'Heart attack': 28, 'Varicose veins': 29, 'Hypothyroidism': 30, 'Hyperthyroidism': 31,
'Hypoglycemia': 32, 'Osteoarthritis': 33, 'Arthritis': 34
}
# Replace prognosis values with numerical categories
df.replace({'prognosis': disease_dict}, inplace=True)
df = df.infer_objects() # Removed 'copy=False' argument
tr.replace({'prognosis': disease_dict}, inplace=True)
tr = tr.infer_objects() # Removed 'copy=False' argument
return df, tr, disease_dict
df, tr, disease_dict = load_data()
l1 = list(df.columns[:-1])
X = df[l1]
y = df['prognosis']
X_test = tr[l1]
y_test = tr['prognosis']
# Encode the target variable
le = LabelEncoder()
y_encoded = le.fit_transform(y) # Encode string labels into integers
def train_models():
models = {
"Decision Tree": DecisionTreeClassifier(),
"Random Forest": RandomForestClassifier(),
"Naive Bayes": GaussianNB()
}
trained_models = {}
for model_name, model_obj in models.items():
model_obj.fit(X, y_encoded) # Use encoded labels
acc = accuracy_score(y_test, model_obj.predict(X_test))
trained_models[model_name] = (model_obj, acc)
return trained_models
trained_models = train_models()
def predict_disease(model, symptoms):
input_test = np.zeros(len(l1))
for symptom in symptoms:
if symptom in l1:
input_test[l1.index(symptom)] = 1
prediction = model.predict([input_test])[0]
confidence = model.predict_proba([input_test])[0][prediction] if hasattr(model, 'predict_proba') else None
return {
"disease": list(disease_dict.keys())[list(disease_dict.values()).index(prediction)],
"confidence": confidence
}
def disease_prediction_interface(symptoms):
symptoms_selected = [s for s in symptoms if s != "None"]
if len(symptoms_selected) < 3:
return ["Please select at least 3 symptoms for accurate prediction."]
results = []
for model_name, (model, acc) in trained_models.items():
prediction_info = predict_disease(model, symptoms_selected)
predicted_disease = prediction_info["disease"]
confidence_score = prediction_info["confidence"]
result = f"{model_name} Prediction: Predicted Disease: **{predicted_disease}**"
if confidence_score is not None:
result += f" (Confidence: {confidence_score:.2f})"
result += f" (Accuracy: {acc * 100:.2f}%)"
results.append(result)
return results
# Helper Functions (for chatbot)
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = next((random.choice(intent["responses"]) for intent in intents_data["intents"] if intent["tag"] == tag), "I'm sorry, I didn't understand that. 🤔")
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative 😔", "Neutral 😐", "Positive 😊"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy 😊",
"anger": "Anger 😠",
"sadness": "Sadness 😢",
"fear": "Fear 😨",
"surprise": "Surprise 😲",
"neutral": "Neutral 😐",
}
return emotion_map.get(emotion, "Unknown 🤔"), emotion
def generate_suggestions(emotion):
emotion_key = emotion.lower()
suggestions = {
# Replace with appropriate suggestions for each emotion
}
formatted_suggestions = [
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
]
return formatted_suggestions
def get_health_professionals_and_map(location, query):
try:
if not location or not query:
return [], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return [], ""
except Exception as e:
return [], ""
# Main Application Logic
def app_function(user_input, location, query, symptoms, history):
chatbot_history, _ = generate_chatbot_response(user_input, history)
sentiment_result = analyze_sentiment(user_input)
emotion_result, cleaned_emotion = detect_emotion(user_input)
suggestions = generate_suggestions(cleaned_emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
disease_results = disease_prediction_interface(symptoms)
return (
chatbot_history,
sentiment_result,
emotion_result,
suggestions,
professionals,
map_html,
disease_results
)
# CSS Styling
custom_css = """
body {
font-family: 'Roboto', sans-serif;
background-color: #3c6487;
color: white;
}
h1 {
background: #ffffff;
color: #000000;
border-radius: 8px;
padding: 10px;
font-weight: bold;
text-align: center;
font-size: 2.5rem;
}
textarea, input {
background: transparent;
color: black;
border: 2px solid orange;
padding: 8px;
font-size: 1rem;
caret-color: black;
outline: none;
border-radius: 8px;
}
textarea:focus, input:focus {
background: transparent;
color: black;
border: 2px solid orange;
outline: none;
}
.df-container {
background: white;
color: black;
border: 2px solid orange;
border-radius: 10px;
padding: 10px;
font-size: 14px;
max-height: 400px;
height: auto;
overflow-y: auto;
}
#suggestions-title {
text-align: center !important;
font-weight: bold !important;
color: white !important;
font-size: 4.2rem !important;
margin-bottom: 20px !important;
}
.gr-button {
background-color: #ae1c93;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #8f167b;
}
.gr-button:active {
background-color: #7f156b;
}
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
with gr.Row():
user_input = gr.Textbox(label="Please Enter Your Message Here")
location = gr.Textbox(label="Your Current Location Here")
query = gr.Textbox(label="Search Health Professionals Nearby")
with gr.Row():
symptom1 = gr.Dropdown(choices=["None"] + l1, label="Symptom 1")
symptom2 = gr.Dropdown(choices=["None"] + l1, label="Symptom 2")
symptom3 = gr.Dropdown(choices=["None"] + l1, label="Symptom 3")
symptom4 = gr.Dropdown(choices=["None"] + l1, label="Symptom 4")
symptom5 = gr.Dropdown(choices=["None"] + l1, label="Symptom 5")
submit = gr.Button(value="Submit", variant="primary")
chatbot = gr.Chatbot(label="Chat History")
sentiment = gr.Textbox(label="Detected Sentiment")
emotion = gr.Textbox(label="Detected Emotion")
gr.Markdown("Suggestions", elem_id="suggestions-title")
suggestions = gr.DataFrame(headers=["Title", "Link"]) # Suggestions DataFrame
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) # Professionals DataFrame
map_html = gr.HTML(label="Interactive Map")
disease_predictions = gr.Textbox(label="Disease Predictions") # For Disease Prediction Results
submit.click(
app_function,
inputs=[user_input, location, query, [symptom1, symptom2, symptom3, symptom4, symptom5], chatbot],
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html, disease_predictions],
)
app.launch()