Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import nltk | |
import numpy as np | |
import tflearn | |
import random | |
import json | |
import pickle | |
from nltk.tokenize import word_tokenize | |
from nltk.stem.lancaster import LancasterStemmer | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import googlemaps | |
import folium | |
import torch | |
# Suppress TensorFlow's GPU usage and warnings | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | |
# Download necessary NLTK resources | |
nltk.download("punkt") | |
stemmer = LancasterStemmer() | |
# Load intents and chatbot training data | |
with open("intents.json") as file: | |
intents_data = json.load(file) | |
with open("data.pickle", "rb") as f: | |
words, labels, training, output = pickle.load(f) | |
# Build the Chatbot Model | |
net = tflearn.input_data(shape=[None, len(training[0])]) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") | |
net = tflearn.regression(net) | |
chatbot_model = tflearn.DNN(net) | |
chatbot_model.load("MentalHealthChatBotmodel.tflearn") | |
# Sentiment and Emotion Detection Models | |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
# Google Maps API Client | |
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY")) | |
# Helper Functions | |
def bag_of_words(s, words): | |
"""Convert user input to bag-of-words vector.""" | |
bag = [0] * len(words) | |
s_words = word_tokenize(s) | |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()] | |
for se in s_words: | |
for i, w in enumerate(words): | |
if w == se: | |
bag[i] = 1 | |
return np.array(bag) | |
def chatbot(message, history): | |
"""Generate chatbot response and append to chat history.""" | |
history = history or [] | |
try: | |
result = chatbot_model.predict([bag_of_words(message, words)]) | |
tag = labels[np.argmax(result)] | |
response = "I'm not sure how to respond to that. π€" | |
for intent in intents_data["intents"]: | |
if intent["tag"] == tag: | |
response = random.choice(intent["responses"]) | |
break | |
except Exception as e: | |
response = f"Error: {e}" | |
history.append((message, response)) | |
return history, response | |
def analyze_sentiment(user_input): | |
"""Analyze sentiment from user input.""" | |
inputs = tokenizer_sentiment(user_input, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_sentiment(**inputs) | |
sentiment_class = torch.argmax(outputs.logits, dim=1).item() | |
sentiment_map = ["Negative π", "Neutral π", "Positive π"] | |
return sentiment_map[sentiment_class] | |
def detect_emotion(user_input): | |
"""Detect user emotion with emoji representation.""" | |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) | |
result = pipe(user_input) | |
emotion = result[0]["label"].lower() | |
emotion_map = { | |
"joy": "π Joy", | |
"anger": "π Anger", | |
"sadness": "π’ Sadness", | |
"fear": "π¨ Fear", | |
"surprise": "π² Surprise", | |
"neutral": "π Neutral", | |
} | |
return emotion_map.get(emotion, "Unknown π€") | |
def generate_suggestions(emotion): | |
"""Provide suggestions based on the detected emotion.""" | |
suggestions = { | |
"joy": [ | |
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'], | |
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'], | |
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'], | |
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'], | |
], | |
"anger": [ | |
["Stress Management Tips", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'], | |
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'], | |
], | |
"fear": [ | |
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'], | |
["Mindfulness Techniques", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'], | |
], | |
"sadness": [ | |
["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'], | |
], | |
"surprise": [ | |
["Managing Surprises", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'], | |
["Calm Relaxation", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'], | |
], | |
} | |
return suggestions.get(emotion.lower(), [["No suggestions are available.", ""]]) | |
def get_health_professionals_and_map(location, query): | |
"""Search for nearby healthcare professionals and generate a map.""" | |
try: | |
if not location or not query: | |
return ["Please provide a valid location and query."], "" | |
geo_location = gmaps.geocode(location) | |
if geo_location: | |
lat, lng = geo_location[0]["geometry"]["location"].values() | |
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"] | |
professionals = [] | |
map_ = folium.Map(location=(lat, lng), zoom_start=13) | |
for place in places_result: | |
professionals.append(f"{place['name']} - {place.get('vicinity', 'No address available')}") | |
folium.Marker( | |
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]], | |
popup=f"{place['name']}" | |
).add_to(map_) | |
return professionals, map_._repr_html_() | |
return ["No professionals found for the given location."], "" | |
except Exception as e: | |
return [f"An error occurred: {str(e)}"], "" | |
# Main Application Logic | |
def app_function(user_message, location, query, history): | |
chatbot_history, _ = chatbot(user_message, history) | |
sentiment = analyze_sentiment(user_message) | |
emotion = detect_emotion(user_message) | |
suggestions = generate_suggestions(emotion) | |
professionals, map_html = get_health_professionals_and_map(location, query) | |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html | |
# Custom CSS for Dark Theme and Gradient Buttons | |
custom_css = """ | |
body { | |
background: linear-gradient(135deg, #000000, #ff5722); | |
font-family: 'Roboto', sans-serif; | |
color: white; | |
} | |
button { | |
background: linear-gradient(45deg, #ff5722, #ff9800) !important; | |
border: none; | |
border-radius: 8px; | |
padding: 12px 20px; | |
cursor: pointer; | |
color: white; | |
font-size: 16px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3); | |
} | |
button:hover { | |
background: linear-gradient(45deg, #ff9800, #ff5722) !important; | |
} | |
textarea, input { | |
background: black !important; | |
color: white !important; | |
padding: 12px; | |
border: 1px solid #ff5722 !important; | |
border-radius: 8px; | |
} | |
.gr-dataframe { | |
background-color: black !important; | |
color: white !important; | |
overflow-y: scroll; | |
height: 300px; | |
border: 1px solid #ff5722; | |
} | |
""" | |
# Gradio Interface | |
with gr.Blocks(css=custom_css) as app: | |
gr.Markdown("<h1 style='text-align: center;'>π Well-Being Companion</h1>") | |
gr.Markdown("<h3 style='text-align: center;'>Empowering Your Mental Health Journey π</h3>") | |
with gr.Row(): | |
user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...") | |
location = gr.Textbox(label="Your Location", placeholder="Enter your location...") | |
query = gr.Textbox(label="Health Query", placeholder="Search for health professionals...") | |
chatbot_history = gr.Chatbot(label="Chat History") | |
sentiment_output = gr.Textbox(label="Detected Sentiment") | |
emotion_output = gr.Textbox(label="Detected Emotion") | |
suggestions_table = gr.DataFrame(headers=["Suggestion", "Link"], label="Suggestions") | |
professionals_output = gr.Textbox(label="Nearby Health Professionals", lines=5) | |
map_output = gr.HTML(label="Map") | |
submit_button = gr.Button("Submit") | |
submit_button.click( | |
app_function, | |
inputs=[user_message, location, query, chatbot_history], | |
outputs=[chatbot_history, sentiment_output, emotion_output, suggestions_table, professionals_output, map_output] | |
) | |
app.launch() |