Spaces:
Sleeping
Sleeping
File size: 8,878 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 fb2aab1 dacc7c0 fb2aab1 3631cca 334ba26 fb2aab1 494aa89 6858546 334ba26 494aa89 0e313c1 fb2aab1 4e61093 274d1f4 6858546 c69efb6 fb2aab1 9e5813b fb2aab1 9e5813b 3631cca fb2aab1 4e61093 fb2aab1 936af04 fb2aab1 4e61093 4184e5e 6858546 936af04 4525308 274d1f4 fb2aab1 4184e5e d9bd34f 4e61093 6858546 4184e5e fb2aab1 11851f1 6858546 936af04 f0734be 3631cca 274d1f4 6858546 274d1f4 fb2aab1 274d1f4 fb2aab1 90f35d6 fb2aab1 90f35d6 fb2aab1 274d1f4 864d91e fb2aab1 658d2e0 3631cca fb2aab1 658d2e0 fb2aab1 d9bd34f 3631cca fb2aab1 d9bd34f fb2aab1 d9bd34f fb2aab1 37c8a73 3631cca 6858546 4e61093 fb2aab1 3631cca fb2aab1 1949203 90f35d6 4568d77 3631cca bdb69d5 3631cca fb2aab1 3631cca fb2aab1 3631cca fb2aab1 3631cca fb2aab1 3631cca bdb69d5 3631cca bdb69d5 fb2aab1 3631cca fb2aab1 3631cca fb2aab1 3631cca fb2aab1 8b34069 3631cca fb2aab1 8b34069 3631cca fb2aab1 6858546 3631cca 658d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Suppress TensorFlow's GPU usage and warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Sentiment and Emotion Detection Models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Helper Functions
def bag_of_words(s, words):
"""Convert user input to bag-of-words vector."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chatbot(message, history):
"""Generate chatbot response and append to chat history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm not sure how to respond to that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Analyze sentiment from user input."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment_class]
def detect_emotion(user_input):
"""Detect user emotion with emoji representation."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower()
emotion_map = {
"joy": "π Joy",
"anger": "π Anger",
"sadness": "π’ Sadness",
"fear": "π¨ Fear",
"surprise": "π² Surprise",
"neutral": "π Neutral",
}
return emotion_map.get(emotion, "Unknown π€")
def generate_suggestions(emotion):
"""Provide suggestions based on the detected emotion."""
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"anger": [
["Stress Management Tips", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
],
"fear": [
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Mindfulness Techniques", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'],
],
"sadness": [
["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'],
],
"surprise": [
["Managing Surprises", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Calm Relaxation", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
}
return suggestions.get(emotion.lower(), [["No suggestions are available.", ""]])
def get_health_professionals_and_map(location, query):
"""Search for nearby healthcare professionals and generate a map."""
try:
if not location or not query:
return ["Please provide a valid location and query."], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', 'No address available')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found for the given location."], ""
except Exception as e:
return [f"An error occurred: {str(e)}"], ""
# Main Application Logic
def app_function(user_message, location, query, history):
chatbot_history, _ = chatbot(user_message, history)
sentiment = analyze_sentiment(user_message)
emotion = detect_emotion(user_message)
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Custom CSS for Dark Theme and Gradient Buttons
custom_css = """
body {
background: linear-gradient(135deg, #000000, #ff5722);
font-family: 'Roboto', sans-serif;
color: white;
}
button {
background: linear-gradient(45deg, #ff5722, #ff9800) !important;
border: none;
border-radius: 8px;
padding: 12px 20px;
cursor: pointer;
color: white;
font-size: 16px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
}
button:hover {
background: linear-gradient(45deg, #ff9800, #ff5722) !important;
}
textarea, input {
background: black !important;
color: white !important;
padding: 12px;
border: 1px solid #ff5722 !important;
border-radius: 8px;
}
.gr-dataframe {
background-color: black !important;
color: white !important;
overflow-y: scroll;
height: 300px;
border: 1px solid #ff5722;
}
"""
# Gradio Interface
with gr.Blocks(css=custom_css) as app:
gr.Markdown("<h1 style='text-align: center;'>π Well-Being Companion</h1>")
gr.Markdown("<h3 style='text-align: center;'>Empowering Your Mental Health Journey π</h3>")
with gr.Row():
user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
query = gr.Textbox(label="Health Query", placeholder="Search for health professionals...")
chatbot_history = gr.Chatbot(label="Chat History")
sentiment_output = gr.Textbox(label="Detected Sentiment")
emotion_output = gr.Textbox(label="Detected Emotion")
suggestions_table = gr.DataFrame(headers=["Suggestion", "Link"], label="Suggestions")
professionals_output = gr.Textbox(label="Nearby Health Professionals", lines=5)
map_output = gr.HTML(label="Map")
submit_button = gr.Button("Submit")
submit_button.click(
app_function,
inputs=[user_message, location, query, chatbot_history],
outputs=[chatbot_history, sentiment_output, emotion_output, suggestions_table, professionals_output, map_output]
)
app.launch() |