File size: 8,878 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
fa97be4
fb2aab1
 
 
dacc7c0
fb2aab1
3631cca
334ba26
 
fb2aab1
494aa89
6858546
334ba26
494aa89
 
0e313c1
fb2aab1
4e61093
274d1f4
 
 
 
6858546
 
c69efb6
fb2aab1
9e5813b
 
fb2aab1
9e5813b
 
 
3631cca
fb2aab1
4e61093
fb2aab1
936af04
fb2aab1
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
274d1f4
fb2aab1
4184e5e
 
d9bd34f
 
4e61093
6858546
 
 
4184e5e
 
fb2aab1
11851f1
6858546
936af04
f0734be
3631cca
274d1f4
 
 
6858546
 
 
274d1f4
 
fb2aab1
274d1f4
 
fb2aab1
90f35d6
 
 
 
 
 
fb2aab1
90f35d6
fb2aab1
274d1f4
864d91e
fb2aab1
658d2e0
 
3631cca
 
 
fb2aab1
658d2e0
 
fb2aab1
 
d9bd34f
 
3631cca
fb2aab1
d9bd34f
 
fb2aab1
d9bd34f
 
fb2aab1
 
 
37c8a73
3631cca
6858546
4e61093
fb2aab1
3631cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2aab1
 
 
 
 
1949203
 
90f35d6
4568d77
3631cca
bdb69d5
3631cca
fb2aab1
3631cca
 
 
 
 
fb2aab1
3631cca
 
 
 
fb2aab1
3631cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2aab1
3631cca
bdb69d5
 
3631cca
bdb69d5
fb2aab1
 
3631cca
 
fb2aab1
3631cca
fb2aab1
3631cca
 
 
 
fb2aab1
 
 
8b34069
3631cca
fb2aab1
8b34069
3631cca
 
fb2aab1
6858546
3631cca
658d2e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch

# Suppress TensorFlow's GPU usage and warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load intents and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Sentiment and Emotion Detection Models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Helper Functions
def bag_of_words(s, words):
    """Convert user input to bag-of-words vector."""
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def chatbot(message, history):
    """Generate chatbot response and append to chat history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm not sure how to respond to that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    """Analyze sentiment from user input."""
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return sentiment_map[sentiment_class]

def detect_emotion(user_input):
    """Detect user emotion with emoji representation."""
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"].lower()
    emotion_map = {
        "joy": "😊 Joy",
        "anger": "😠 Anger",
        "sadness": "😒 Sadness",
        "fear": "😨 Fear",
        "surprise": "😲 Surprise",
        "neutral": "😐 Neutral",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”")

def generate_suggestions(emotion):
    """Provide suggestions based on the detected emotion."""
    suggestions = {
        "joy": [
            ["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
            ["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
        ],
        "anger": [
            ["Stress Management Tips", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
        ],
        "fear": [
            ["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
            ["Mindfulness Techniques", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'],
        ],
        "sadness": [
            ["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'],
        ],
        "surprise": [
            ["Managing Surprises", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
            ["Calm Relaxation", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
        ],
    }
    return suggestions.get(emotion.lower(), [["No suggestions are available.", ""]])

def get_health_professionals_and_map(location, query):
    """Search for nearby healthcare professionals and generate a map."""
    try:
        if not location or not query:
            return ["Please provide a valid location and query."], ""

        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]

            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                professionals.append(f"{place['name']} - {place.get('vicinity', 'No address available')}")
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()

        return ["No professionals found for the given location."], ""
    except Exception as e:
        return [f"An error occurred: {str(e)}"], ""

# Main Application Logic
def app_function(user_message, location, query, history):
    chatbot_history, _ = chatbot(user_message, history)
    sentiment = analyze_sentiment(user_message)
    emotion = detect_emotion(user_message)
    suggestions = generate_suggestions(emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    return chatbot_history, sentiment, emotion, suggestions, professionals, map_html

# Custom CSS for Dark Theme and Gradient Buttons
custom_css = """
body {
    background: linear-gradient(135deg, #000000, #ff5722);
    font-family: 'Roboto', sans-serif;
    color: white;
}
button {
    background: linear-gradient(45deg, #ff5722, #ff9800) !important;
    border: none;
    border-radius: 8px;
    padding: 12px 20px;
    cursor: pointer;
    color: white;
    font-size: 16px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
}
button:hover {
    background: linear-gradient(45deg, #ff9800, #ff5722) !important;
}
textarea, input {
    background: black !important;
    color: white !important;
    padding: 12px;
    border: 1px solid #ff5722 !important;
    border-radius: 8px;
}
.gr-dataframe {
    background-color: black !important;
    color: white !important;
    overflow-y: scroll;
    height: 300px;
    border: 1px solid #ff5722;
}
"""

# Gradio Interface
with gr.Blocks(css=custom_css) as app:
    gr.Markdown("<h1 style='text-align: center;'>🌟 Well-Being Companion</h1>")
    gr.Markdown("<h3 style='text-align: center;'>Empowering Your Mental Health Journey πŸ’š</h3>")

    with gr.Row():
        user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
        location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
        query = gr.Textbox(label="Health Query", placeholder="Search for health professionals...")

    chatbot_history = gr.Chatbot(label="Chat History")
    sentiment_output = gr.Textbox(label="Detected Sentiment")
    emotion_output = gr.Textbox(label="Detected Emotion")
    suggestions_table = gr.DataFrame(headers=["Suggestion", "Link"], label="Suggestions")
    professionals_output = gr.Textbox(label="Nearby Health Professionals", lines=5)
    map_output = gr.HTML(label="Map")

    submit_button = gr.Button("Submit")

    submit_button.click(
        app_function,
        inputs=[user_message, location, query, chatbot_history],
        outputs=[chatbot_history, sentiment_output, emotion_output, suggestions_table, professionals_output, map_output]
    )

app.launch()