Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -77,19 +77,24 @@ def load_data():
|
|
77 |
# Replace prognosis values with numerical categories
|
78 |
df.replace({'prognosis': disease_dict}, inplace=True)
|
79 |
|
80 |
-
#
|
81 |
print("Unique values in prognosis after mapping:", df['prognosis'].unique())
|
82 |
|
83 |
-
#
|
84 |
-
df['prognosis']
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
# Inference doesn't require fixing as copy=True defaults
|
87 |
df = df.infer_objects()
|
88 |
|
89 |
tr.replace({'prognosis': disease_dict}, inplace=True)
|
90 |
|
91 |
# Ensure it is also numerical
|
92 |
-
|
|
|
93 |
|
94 |
tr['prognosis'] = tr['prognosis'].astype(int) # Convert to integer if necessary
|
95 |
tr = tr.infer_objects()
|
@@ -105,7 +110,7 @@ y_test = tr['prognosis']
|
|
105 |
|
106 |
# Encode the target variable with LabelEncoder if not already numerical
|
107 |
le = LabelEncoder()
|
108 |
-
y_encoded = le.fit_transform(y) #
|
109 |
|
110 |
def train_models():
|
111 |
models = {
|
|
|
77 |
# Replace prognosis values with numerical categories
|
78 |
df.replace({'prognosis': disease_dict}, inplace=True)
|
79 |
|
80 |
+
# Unique values for debugging
|
81 |
print("Unique values in prognosis after mapping:", df['prognosis'].unique())
|
82 |
|
83 |
+
# Before converting to integer, check if all entries are mapped correctly
|
84 |
+
if df['prognosis'].dtype == 'object': # Check if any mapping error occurred
|
85 |
+
raise ValueError(f"Prognosis contains unmapped values: {df['prognosis'].unique()}")
|
86 |
+
|
87 |
+
# Convert to integer
|
88 |
+
df['prognosis'] = df['prognosis'].astype(int)
|
89 |
+
|
90 |
# Inference doesn't require fixing as copy=True defaults
|
91 |
df = df.infer_objects()
|
92 |
|
93 |
tr.replace({'prognosis': disease_dict}, inplace=True)
|
94 |
|
95 |
# Ensure it is also numerical
|
96 |
+
if tr['prognosis'].dtype == 'object':
|
97 |
+
raise ValueError(f"Testing data prognosis contains unmapped values: {tr['prognosis'].unique()}")
|
98 |
|
99 |
tr['prognosis'] = tr['prognosis'].astype(int) # Convert to integer if necessary
|
100 |
tr = tr.infer_objects()
|
|
|
110 |
|
111 |
# Encode the target variable with LabelEncoder if not already numerical
|
112 |
le = LabelEncoder()
|
113 |
+
y_encoded = le.fit_transform(y) # Fits and transforms the labels
|
114 |
|
115 |
def train_models():
|
116 |
models = {
|