Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,8 +10,6 @@ from nltk.tokenize import word_tokenize
|
|
10 |
from nltk.stem.lancaster import LancasterStemmer
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
import requests
|
13 |
-
from bs4 import BeautifulSoup
|
14 |
-
import pandas as pd
|
15 |
import geocoder # Use geocoder to get latitude/longitude from city
|
16 |
|
17 |
# Ensure necessary NLTK resources are downloaded
|
@@ -108,13 +106,11 @@ def chat(message, history, state):
|
|
108 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
109 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
110 |
|
111 |
-
# Function for sentiment analysis
|
112 |
# Function for sentiment analysis
|
113 |
def analyze_sentiment(text, state):
|
114 |
-
# Initialize state if it's None
|
115 |
if state is None:
|
116 |
state = {'step': 1}
|
117 |
-
|
118 |
inputs = tokenizer(text, return_tensors="pt")
|
119 |
with torch.no_grad():
|
120 |
outputs = sentiment_model(**inputs)
|
@@ -194,56 +190,60 @@ def provide_suggestions(emotion):
|
|
194 |
'videos': "[Watch Stress Relief Video](https://youtu.be/m1vaUGtyo-A)"
|
195 |
}
|
196 |
}
|
197 |
-
|
|
|
|
|
198 |
|
199 |
-
# Function to
|
200 |
-
def
|
201 |
-
#
|
202 |
-
g = geocoder.osm(location)
|
203 |
if g.ok:
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
217 |
else:
|
218 |
-
|
219 |
-
|
220 |
-
return response, state
|
221 |
|
222 |
-
#
|
223 |
-
def
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
if 'results' in response:
|
228 |
-
return response['results']
|
229 |
-
return []
|
230 |
|
231 |
-
#
|
232 |
-
# Function to create the UI with state initialization
|
233 |
def create_ui():
|
234 |
with gr.Blocks() as demo:
|
235 |
-
state = gr.State({'step': 1})
|
236 |
chatbot = gr.Chatbot(elem_id="chatbot", label="Mental Health Chatbot")
|
237 |
message_input = gr.Textbox(placeholder="Ask me something...", label="Enter your message")
|
238 |
sentiment_output = gr.Textbox(placeholder="Sentiment result", label="Sentiment")
|
239 |
emotion_output = gr.Textbox(placeholder="Detected emotion", label="Emotion")
|
240 |
-
wellness_output = gr.Textbox(placeholder="Wellness
|
241 |
-
|
|
|
242 |
message_input.submit(chat, [message_input, chatbot, state], [chatbot, chatbot, state])
|
243 |
message_input.submit(analyze_sentiment, [message_input, state], [sentiment_output, state])
|
244 |
sentiment_output.submit(detect_emotion, [sentiment_output, state], [emotion_output, wellness_output, state])
|
245 |
-
|
|
|
|
|
246 |
|
247 |
-
# Launch
|
248 |
demo = create_ui()
|
249 |
-
demo.launch(debug=True)
|
|
|
10 |
from nltk.stem.lancaster import LancasterStemmer
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
import requests
|
|
|
|
|
13 |
import geocoder # Use geocoder to get latitude/longitude from city
|
14 |
|
15 |
# Ensure necessary NLTK resources are downloaded
|
|
|
106 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
107 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
108 |
|
|
|
109 |
# Function for sentiment analysis
|
110 |
def analyze_sentiment(text, state):
|
|
|
111 |
if state is None:
|
112 |
state = {'step': 1}
|
113 |
+
|
114 |
inputs = tokenizer(text, return_tensors="pt")
|
115 |
with torch.no_grad():
|
116 |
outputs = sentiment_model(**inputs)
|
|
|
190 |
'videos': "[Watch Stress Relief Video](https://youtu.be/m1vaUGtyo-A)"
|
191 |
}
|
192 |
}
|
193 |
+
|
194 |
+
# Ensure we return a message even if no articles/videos are found
|
195 |
+
return resources.get(emotion, {'message': "Stay calm. 🙂", 'articles': ["[General Wellbeing Tips](https://www.helpguide.org)"], 'videos': []})
|
196 |
|
197 |
+
# Function to fetch wellness professionals based on location
|
198 |
+
def get_wellness_professionals(location):
|
199 |
+
# Use Geocoder to get latitude/longitude from city
|
200 |
+
g = geocoder.osm(location)
|
201 |
if g.ok:
|
202 |
+
latitude, longitude = g.latlng
|
203 |
+
google_api_url = f"https://maps.googleapis.com/maps/api/place/nearbysearch/json?location={latitude},{longitude}&radius=5000&type=health&key=YOUR_GOOGLE_API_KEY"
|
204 |
+
|
205 |
+
response = requests.get(google_api_url)
|
206 |
+
data = response.json()
|
207 |
+
|
208 |
+
professionals = []
|
209 |
+
if 'results' in data:
|
210 |
+
for place in data['results']:
|
211 |
+
name = place['name']
|
212 |
+
address = place.get('vicinity', 'No address available')
|
213 |
+
url = place.get('website', '#')
|
214 |
+
professionals.append(f"**{name}** - {address} - [Visit Website]({url})")
|
215 |
+
|
216 |
+
if not professionals:
|
217 |
+
professionals.append("No wellness professionals found nearby.")
|
218 |
+
|
219 |
+
return "\n".join(professionals)
|
220 |
else:
|
221 |
+
return "Couldn't fetch your location. Please make sure you entered a valid location."
|
|
|
|
|
222 |
|
223 |
+
# Function to ask for location and provide wellness professionals
|
224 |
+
def search_wellness_professionals(location, state):
|
225 |
+
professionals = get_wellness_professionals(location)
|
226 |
+
state['step'] = 5 # Move to the next step
|
227 |
+
return professionals, state
|
|
|
|
|
|
|
228 |
|
229 |
+
# Create the UI with location input for wellness professionals
|
|
|
230 |
def create_ui():
|
231 |
with gr.Blocks() as demo:
|
232 |
+
state = gr.State({'step': 1})
|
233 |
chatbot = gr.Chatbot(elem_id="chatbot", label="Mental Health Chatbot")
|
234 |
message_input = gr.Textbox(placeholder="Ask me something...", label="Enter your message")
|
235 |
sentiment_output = gr.Textbox(placeholder="Sentiment result", label="Sentiment")
|
236 |
emotion_output = gr.Textbox(placeholder="Detected emotion", label="Emotion")
|
237 |
+
wellness_output = gr.Textbox(placeholder="Wellness professionals nearby", label="Wellness Professionals")
|
238 |
+
location_input = gr.Textbox(placeholder="Enter your city for wellness professionals", label="Location")
|
239 |
+
|
240 |
message_input.submit(chat, [message_input, chatbot, state], [chatbot, chatbot, state])
|
241 |
message_input.submit(analyze_sentiment, [message_input, state], [sentiment_output, state])
|
242 |
sentiment_output.submit(detect_emotion, [sentiment_output, state], [emotion_output, wellness_output, state])
|
243 |
+
location_input.submit(search_wellness_professionals, [location_input, state], [wellness_output, state])
|
244 |
+
|
245 |
+
return demo
|
246 |
|
247 |
+
# Launch Gradio interface
|
248 |
demo = create_ui()
|
249 |
+
demo.launch(debug=True)
|