DreamStream-1's picture
Update app.py
f2fc69b verified
import os
import gradio as gr
import nltk
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
import logging
# --- Groq LLM Integration ---
from groq import Groq
# Load Groq API key from Hugging Face secret
GROQ_API_KEY = os.environ.get("groq")
client = Groq(api_key=GROQ_API_KEY)
def ask_groq_llm(user_message):
response = client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[
{"role": "user", "content": user_message}
]
)
return response.choices[0].message.content
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model using TensorFlow 2.x Keras
chatbot_model = Sequential([
Dense(8, input_shape=(len(training[0]),), activation='relu'),
Dense(8, activation='relu'),
Dense(len(output[0]), activation='softmax')
])
chatbot_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Load the saved model or train if not present
if os.path.exists("MentalHealthChatBotmodel.h5"):
chatbot_model = load_model("MentalHealthChatBotmodel.h5")
else:
chatbot_model.fit(training, output, epochs=1000, batch_size=8, verbose=1)
chatbot_model.save("MentalHealthChatBotmodel.h5")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Initialize emotion pipeline once
emotion_pipeline = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Load the disease dataset
df_train = pd.read_csv("Training.csv")
df_test = pd.read_csv("Testing.csv")
# Label encoder for consistent train/test encoding
label_encoder = LabelEncoder()
def prepare_data(df, is_train=True):
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
if is_train:
y_encoded = label_encoder.fit_transform(y)
else:
y_encoded = label_encoder.transform(y)
return X, y_encoded
X_train, y_train = prepare_data(df_train, is_train=True)
X_test, y_test = prepare_data(df_test, is_train=False)
# Define the models
models = {
"Decision Tree": DecisionTreeClassifier(),
"Random Forest": RandomForestClassifier(),
"Naive Bayes": GaussianNB()
}
# Train and evaluate models
trained_models = {}
for model_name, model_obj in models.items():
model_obj.fit(X_train, y_train)
y_pred = model_obj.predict(X_test)
acc = accuracy_score(y_test, y_pred)
trained_models[model_name] = {'model': model_obj, 'accuracy': acc}
# --- Helper Functions for Chatbot ---
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
history = history or []
try:
result = chatbot_model.predict(np.array([bag_of_words(message, words)]), verbose=0)
tag = labels[np.argmax(result)]
response = "I'm sorry, I didn't understand that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
result = emotion_pipeline(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy 😊",
"anger": "Anger 😠",
"sadness": "Sadness 😒",
"fear": "Fear 😨",
"surprise": "Surprise 😲",
"neutral": "Neutral 😐",
}
return emotion_map.get(emotion, "Unknown πŸ€”"), emotion
def generate_suggestions(emotion):
emotion_key = emotion.lower()
suggestions = {
"joy": [
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
],
"anger": [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Relaxation Video", "https://youtu.be/MIc299Flibs"),
],
"fear": [
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
],
"sadness": [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Relaxation Video", "https://youtu.be/-e-4Kx5px_I"),
],
"surprise": [
("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"),
],
}
formatted_suggestions = [
"### Suggestions",
f"Since you’re feeling {emotion}, you might find these links particularly helpful. Don’t hesitate to explore:",
"| Title | Link |",
"|-------|------|"
]
formatted_suggestions += [
f"| {title} | [{link}]({link}) |"
for title, link in suggestions.get(emotion_key, [("No specific suggestions available.", "#")])
]
return "\n".join(formatted_suggestions)
def get_health_professionals_and_map(location, query):
try:
if not location or not query:
return [], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return [], ""
except Exception as e:
logging.error(f"Error fetching health professionals: {e}")
return [], ""
def app_function_chatbot(user_input, location, query, history):
chatbot_history, _ = generate_chatbot_response(user_input, history)
sentiment_result = analyze_sentiment(user_input)
emotion_result, cleaned_emotion = detect_emotion(user_input)
suggestions = generate_suggestions(cleaned_emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
def predict_disease(symptoms):
valid_symptoms = [s for s in symptoms if s is not None]
if len(valid_symptoms) < 3:
return "Please select at least 3 symptoms for a better prediction."
input_test = np.zeros(len(X_train.columns))
for symptom in valid_symptoms:
if symptom in X_train.columns:
input_test[X_train.columns.get_loc(symptom)] = 1
predictions = {}
for model_name, info in trained_models.items():
prediction = info['model'].predict([input_test])[0]
predicted_disease = label_encoder.inverse_transform([prediction])[0]
predictions[model_name] = predicted_disease
markdown_output = [
"### Predicted Diseases",
"| Model | Predicted Disease |",
"|-------|------------------|"
]
for model_name, disease in predictions.items():
markdown_output.append(f"| {model_name} | {disease} |")
return "\n".join(markdown_output)
welcome_message = """
<style>
@keyframes fadeIn {
0% { opacity: 0; }
100% { opacity: 1; }
}
#welcome-message {
font-size: 2em;
font-weight: bold;
text-align: center;
animation: fadeIn 3s ease-in-out;
margin-bottom: 20px;
}
.info-graphic {
display: flex;
justify-content: center;
align-items: center;
margin: 20px 0;
}
.info-graphic img {
width: 150px;
height: auto;
margin: 0 10px;
}
h1 {
text-align: center;
font-size: 3em;
color: #004d40;
margin-bottom: 20px;
}
</style>
<div id="welcome-message">Welcome to the Well-Being Companion!</div>
"""
with gr.Blocks(theme="shivi/calm_seafoam") as app:
gr.HTML(welcome_message)
with gr.Tab("Well-Being Chatbot"):
gr.HTML("""
<h1 style="color: #388e3c; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 3.5em; margin-bottom: 0;">
🌼 Well-Being Companion 🌼
</h1>
<p style="color: #4caf50; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 1.5em; margin-top: 0;">
Your Trustworthy Guide to Emotional Wellness and Health
</p>
<h2 style="color: #2e7d32; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 1.2em;">
🌈 Emotional Support | πŸ§˜πŸ»β€β™€οΈ Mindfulness | πŸ₯— Nutrition | πŸ‹οΈ Physical Health | πŸ’€ Sleep Hygiene
</h2>
<ul style="text-align: center; color: #2e7d32;">
<li>πŸ‘‰ Enter your messages in the input box to chat with our well-being companion.</li>
<li>πŸ‘‰ Share your current location to find nearby health professionals.</li>
<li>πŸ‘‰ Receive emotional support suggestions based on your chat.</li>
</ul>
""")
gr.HTML("""
<div class="info-graphic">
<img src="https://i.imgur.com/3ixjqBf.png" alt="Wellness Image 1">
<img src="https://i.imgur.com/Nvljr1A.png" alt="Wellness Image 2">
<img src="https://i.imgur.com/hcYAUJ3.png" alt="Wellness Image 3">
</div>
""")
with gr.Row():
user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message here...", max_lines=3)
location = gr.Textbox(label="Please Enter Your Current Location", placeholder="E.g., Honolulu", max_lines=1)
query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="E.g., Health Professionals", max_lines=1)
with gr.Row():
submit_chatbot = gr.Button(value="Submit Your Message", variant="primary")
clear_chatbot = gr.Button(value="Clear", variant="secondary")
chatbot = gr.Chatbot(label="Chat History", show_label=True)
sentiment = gr.Textbox(label="Detected Sentiment", show_label=True)
emotion = gr.Textbox(label="Detected Emotion", show_label=True)
professionals = gr.DataFrame(
label="Nearby Health Professionals",
headers=["Name", "Address"],
value=[]
)
suggestions_markdown = gr.Markdown(label="Suggestions")
map_html = gr.HTML(label="Interactive Map")
def clear_input():
return "", []
submit_chatbot.click(
app_function_chatbot,
inputs=[user_input, location, query, chatbot],
outputs=[chatbot, sentiment, emotion, suggestions_markdown, professionals, map_html],
)
clear_chatbot.click(
clear_input,
inputs=None,
outputs=[user_input, chatbot]
)
with gr.Tab("Groq Medical Q&A"):
groq_input = gr.Textbox(label="Ask a medical question (Groq LLM)")
groq_output = gr.Textbox(label="Groq LLM Response")
groq_button = gr.Button("Ask Groq LLM")
groq_button.click(
ask_groq_llm,
inputs=groq_input,
outputs=groq_output
)
with gr.Tab("Disease Prediction"):
gr.HTML("""
<h1 style="color: #388e3c; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 3.5em; margin-bottom: 0;">
Disease Prediction
</h1>
<p style="color: #4caf50; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 1.5em; margin-top: 0;">
Help us understand your symptoms!
</p>
<ul style="text-align: center; color: #2e7d32;">
<li>πŸ‘‰ Select at least 3 symptoms from the dropdown lists.</li>
<li>πŸ‘‰ Click on "Predict Disease" to see potential conditions.</li>
<li>πŸ‘‰ Review the results displayed below!</li>
</ul>
""")
symptom1 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 1", value=None)
symptom2 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 2", value=None)
symptom3 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 3", value=None)
symptom4 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 4", value=None)
symptom5 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 5", value=None)
submit_disease = gr.Button(value="Predict Disease", variant="primary")
disease_prediction_result = gr.Markdown(label="Predicted Diseases")
submit_disease.click(
lambda sym1, sym2, sym3, sym4, sym5: predict_disease([sym1, sym2, sym3, sym4, sym5]),
inputs=[symptom1, symptom2, symptom3, symptom4, symptom5],
outputs=disease_prediction_result
)
if __name__ == "__main__":
app.launch(share=True)