Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import nltk | |
import numpy as np | |
import tflearn | |
import random | |
import json | |
import pickle | |
from nltk.tokenize import word_tokenize | |
from nltk.stem.lancaster import LancasterStemmer | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import googlemaps | |
import folium | |
import torch | |
import pandas as pd | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.naive_bayes import GaussianNB | |
from sklearn.metrics import accuracy_score | |
# Suppress TensorFlow warnings | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | |
# Download necessary NLTK resources | |
nltk.download("punkt") | |
stemmer = LancasterStemmer() | |
# Load intents and chatbot training data | |
with open("intents.json") as file: | |
intents_data = json.load(file) | |
with open("data.pickle", "rb") as f: | |
words, labels, training, output = pickle.load(f) | |
# Build the chatbot model | |
net = tflearn.input_data(shape=[None, len(training[0])]) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") | |
net = tflearn.regression(net) | |
chatbot_model = tflearn.DNN(net) | |
chatbot_model.load("MentalHealthChatBotmodel.tflearn") | |
# Hugging Face sentiment and emotion models | |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
# Google Maps API Client | |
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY")) | |
# Load the disease dataset | |
df_train = pd.read_csv("Training.csv") # Change the file path as necessary | |
df_test = pd.read_csv("Testing.csv") # Change the file path as necessary | |
# Encode diseases | |
disease_dict = { | |
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4, | |
'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9, | |
'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13, | |
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'hepatitis A': 19, | |
'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24, | |
'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemorrhoids(piles)': 28, | |
'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32, | |
'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35, | |
'(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38, | |
'Psoriasis': 39, 'Impetigo': 40 | |
} | |
# Function to prepare data | |
def prepare_data(df): | |
"""Prepares data for training/testing.""" | |
X = df.iloc[:, :-1] # Features | |
y = df.iloc[:, -1] # Target | |
label_encoder = LabelEncoder() | |
y_encoded = label_encoder.fit_transform(y) | |
return X, y_encoded, label_encoder | |
# Preparing training and testing data | |
X_train, y_train, label_encoder_train = prepare_data(df_train) | |
X_test, y_test, label_encoder_test = prepare_data(df_test) | |
# Define the models | |
models = { | |
"Decision Tree": DecisionTreeClassifier(), | |
"Random Forest": RandomForestClassifier(), | |
"Naive Bayes": GaussianNB() | |
} | |
# Train and evaluate models | |
trained_models = {} | |
for model_name, model_obj in models.items(): | |
model_obj.fit(X_train, y_train) # Fit the model | |
y_pred = model_obj.predict(X_test) # Make predictions | |
acc = accuracy_score(y_test, y_pred) # Calculate accuracy | |
trained_models[model_name] = {'model': model_obj, 'accuracy': acc} | |
# Helper Functions for Chatbot | |
def bag_of_words(s, words): | |
"""Convert user input to bag-of-words vector.""" | |
bag = [0] * len(words) | |
s_words = word_tokenize(s) | |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()] | |
for se in s_words: | |
for i, w in enumerate(words): | |
if w == se: | |
bag[i] = 1 | |
return np.array(bag) | |
def generate_chatbot_response(message, history): | |
"""Generate chatbot response and maintain conversation history.""" | |
history = history or [] | |
try: | |
result = chatbot_model.predict([bag_of_words(message, words)]) | |
tag = labels[np.argmax(result)] | |
response = "I'm sorry, I didn't understand that. π€" | |
for intent in intents_data["intents"]: | |
if intent["tag"] == tag: | |
response = random.choice(intent["responses"]) | |
break | |
except Exception as e: | |
response = f"Error: {e}" | |
history.append((message, response)) | |
return history, response | |
def analyze_sentiment(user_input): | |
"""Analyze sentiment and map to emojis.""" | |
inputs = tokenizer_sentiment(user_input, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_sentiment(**inputs) | |
sentiment_class = torch.argmax(outputs.logits, dim=1).item() | |
sentiment_map = ["Negative π", "Neutral π", "Positive π"] | |
return f"Sentiment: {sentiment_map[sentiment_class]}" | |
def detect_emotion(user_input): | |
"""Detect emotions based on input.""" | |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) | |
result = pipe(user_input) | |
emotion = result[0]["label"].lower().strip() | |
emotion_map = { | |
"joy": "Joy π", | |
"anger": "Anger π ", | |
"sadness": "Sadness π’", | |
"fear": "Fear π¨", | |
"surprise": "Surprise π²", | |
"neutral": "Neutral π", | |
} | |
return emotion_map.get(emotion, "Unknown π€"), emotion | |
def generate_suggestions(emotion): | |
"""Return relevant suggestions based on detected emotions.""" | |
emotion_key = emotion.lower() | |
suggestions = { | |
"joy": [ | |
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"), | |
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Relaxation Video", "https://youtu.be/yGKKz185M5o"), | |
], | |
"anger": [ | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"), | |
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Relaxation Video", "https://youtu.be/MIc299Flibs"), | |
], | |
"fear": [ | |
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"), | |
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Relaxation Video", "https://youtu.be/yGKKz185M5o"), | |
], | |
"sadness": [ | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Relaxation Video", "https://youtu.be/-e-4Kx5px_I"), | |
], | |
"surprise": [ | |
("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"), | |
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"), | |
], | |
} | |
# Create a markdown string for clickable suggestions in a table format | |
formatted_suggestions = ["### Suggestions"] | |
formatted_suggestions.append(f"Since youβre feeling {emotion}, you might find these links particularly helpful. Donβt hesitate to explore:") | |
formatted_suggestions.append("| Title | Link |") | |
formatted_suggestions.append("|-------|------|") # Table headers | |
formatted_suggestions += [ | |
f"| {title} | [{link}]({link}) |" for title, link in suggestions.get(emotion_key, [("No specific suggestions available.", "#")]) | |
] | |
return "\n".join(formatted_suggestions) | |
def get_health_professionals_and_map(location, query): | |
"""Search nearby healthcare professionals using Google Maps API.""" | |
try: | |
if not location or not query: | |
return [], "" # Return empty list if inputs are missing | |
geo_location = gmaps.geocode(location) | |
if geo_location: | |
lat, lng = geo_location[0]["geometry"]["location"].values() | |
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"] | |
professionals = [] | |
map_ = folium.Map(location=(lat, lng), zoom_start=13) | |
for place in places_result: | |
professionals.append([place['name'], place.get('vicinity', 'No address provided')]) | |
folium.Marker( | |
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]], | |
popup=f"{place['name']}" | |
).add_to(map_) | |
return professionals, map_._repr_html_() | |
return [], "" # Return empty list if no professionals found | |
except Exception as e: | |
return [], "" # Return empty list on exception | |
# Main Application Logic for Chatbot | |
def app_function_chatbot(user_input, location, query, history): | |
chatbot_history, _ = generate_chatbot_response(user_input, history) | |
sentiment_result = analyze_sentiment(user_input) | |
emotion_result, cleaned_emotion = detect_emotion(user_input) | |
suggestions = generate_suggestions(cleaned_emotion) | |
professionals, map_html = get_health_professionals_and_map(location, query) | |
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html | |
# Disease Prediction Logic | |
def predict_disease(symptoms): | |
"""Predict disease based on input symptoms.""" | |
valid_symptoms = [s for s in symptoms if s is not None] # Filter out None values | |
if len(valid_symptoms) < 3: | |
return "Please select at least 3 symptoms for a better prediction." | |
input_test = np.zeros(len(X_train.columns)) # Create an array for feature input | |
for symptom in valid_symptoms: | |
if symptom in X_train.columns: | |
input_test[X_train.columns.get_loc(symptom)] = 1 | |
predictions = {} | |
for model_name, info in trained_models.items(): | |
prediction = info['model'].predict([input_test])[0] | |
predicted_disease = label_encoder_train.inverse_transform([prediction])[0] | |
predictions[model_name] = predicted_disease | |
# Create a Markdown table for displaying predictions | |
markdown_output = ["### Predicted Diseases"] | |
markdown_output.append("| Model | Predicted Disease |") | |
markdown_output.append("|-------|------------------|") # Table headers | |
for model_name, disease in predictions.items(): | |
markdown_output.append(f"| {model_name} | {disease} |") | |
return "\n".join(markdown_output) | |
# CSS for the animated welcome message and improved styles | |
welcome_message = """ | |
<style> | |
@keyframes fadeIn { | |
0% { opacity: 0; } | |
100% { opacity: 1; } | |
} | |
#welcome-message { | |
font-size: 2em; | |
font-weight: bold; | |
text-align: center; | |
animation: fadeIn 3s ease-in-out; | |
margin-bottom: 20px; | |
} | |
.info-graphic { | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
margin: 20px 0; | |
} | |
.info-graphic img { | |
width: 150px; /* Adjust size as needed */ | |
height: auto; /* Keep aspect ratio */ | |
margin: 0 10px; /* Space between images */ | |
} | |
h1 { | |
text-align: center; /* Center-align the main title */ | |
font-size: 3em; /* Increase title size */ | |
color: #004d40; /* Use your theme's color */ | |
margin-bottom: 20px; /* Space below the title */ | |
} | |
</style> | |
<div id="welcome-message">Welcome to the Well-Being Companion!</div> | |
""" | |
# Gradio Application Interface | |
with gr.Blocks(theme="shivi/calm_seafoam") as app: | |
gr.HTML(welcome_message) # Animated welcome message | |
with gr.Tab("Well-Being Chatbot"): | |
gr.HTML(""" | |
<h1 style="color: #388e3c; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 3.5em; margin-bottom: 0;"> | |
πΌ Well-Being Companion πΌ | |
</h1> | |
<p style="color: #4caf50; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 1.5em; margin-top: 0;"> | |
Your Trustworthy Guide to Emotional Wellness and Health | |
</p> | |
<h2 style="color: #2e7d32; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 1.2em;"> | |
π Emotional Support | π§π»ββοΈ Mindfulness | π₯ Nutrition | ποΈ Physical Health | π€ Sleep Hygiene | |
</h2> | |
<ul style="text-align: center; color: #2e7d32;"> | |
<li>π Enter your messages in the input box to chat with our well-being companion.</li> | |
<li>π Share your current location to find nearby health professionals.</li> | |
<li>π Receive emotional support suggestions based on your chat.</li> | |
</ul> | |
""") | |
# Infographics with images | |
gr.HTML(""" | |
<div class="info-graphic"> | |
<img src="https://i.imgur.com/3ixjqBf.png" alt="Wellness Image 1"> | |
<img src="https://i.imgur.com/Nvljr1A.png" alt="Wellness Image 2"> | |
<img src="https://i.imgur.com/hcYAUJ3.png" alt="Wellness Image 3"> | |
</div> | |
""") | |
with gr.Row(): | |
user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message here...", max_lines=3) | |
location = gr.Textbox(label="Please Enter Your Current Location", placeholder="E.g., Honolulu", max_lines=1) | |
query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="E.g., Health Professionals", max_lines=1) | |
with gr.Row(): # Align Submit and Clear buttons side by side | |
submit_chatbot = gr.Button(value="Submit Your Message", variant="primary") | |
clear_chatbot = gr.Button(value="Clear", variant="secondary") # Clear button | |
chatbot = gr.Chatbot(label="Chat History", show_label=True) | |
sentiment = gr.Textbox(label="Detected Sentiment", show_label=True) | |
emotion = gr.Textbox(label="Detected Emotion", show_label=True) | |
# Apply styles and create the DataFrame | |
professionals = gr.DataFrame( | |
label="Nearby Health Professionals", # Use label parameter to set the title | |
headers=["Name", "Address"], | |
value=[] # Initialize with empty data | |
) | |
suggestions_markdown = gr.Markdown(label="Suggestions") | |
map_html = gr.HTML(label="Interactive Map") | |
# Functionality to clear the chat input | |
def clear_input(): | |
return "", [] # Clear both the user input and chat history | |
submit_chatbot.click( | |
app_function_chatbot, | |
inputs=[user_input, location, query, chatbot], | |
outputs=[chatbot, sentiment, emotion, suggestions_markdown, professionals, map_html], | |
) | |
clear_chatbot.click( | |
clear_input, | |
inputs=None, | |
outputs=[user_input, chatbot] # Reset user input and chat history | |
) | |
with gr.Tab("Disease Prediction"): | |
gr.HTML(""" | |
<h1 style="color: #388e3c; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 3.5em; margin-bottom: 0;"> | |
Disease Prediction | |
</h1> | |
<p style="color: #4caf50; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 1.5em; margin-top: 0;"> | |
Help us understand your symptoms! | |
</p> | |
<ul style="text-align: center; color: #2e7d32;"> | |
<li>π Select at least 3 symptoms from the dropdown lists.</li> | |
<li>π Click on "Predict Disease" to see potential conditions.</li> | |
<li>π Review the results displayed below!</li> | |
</ul> | |
""") | |
symptom1 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 1", value=None) | |
symptom2 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 2", value=None) | |
symptom3 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 3", value=None) | |
symptom4 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 4", value=None) | |
symptom5 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 5", value=None) | |
submit_disease = gr.Button(value="Predict Disease", variant="primary") | |
disease_prediction_result = gr.Markdown(label="Predicted Diseases") | |
submit_disease.click( | |
lambda symptom1, symptom2, symptom3, symptom4, symptom5: predict_disease( | |
[symptom1, symptom2, symptom3, symptom4, symptom5]), | |
inputs=[symptom1, symptom2, symptom3, symptom4, symptom5], | |
outputs=disease_prediction_result | |
) | |
# Launch the Gradio application | |
app.launch() |