File size: 5,676 Bytes
80085db
 
 
 
 
 
 
 
 
 
 
7297a63
f4f2db0
008a68e
80085db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fbad9d
80085db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b724ee
4c2f821
1b724ee
4c2f821
1b724ee
4c2f821
80085db
 
 
 
 
6ae2919
80085db
 
 
 
 
 
 
 
 
 
 
 
 
6ae2919
80085db
 
7a34084
a78ff7a
 
 
7a34084
 
67ee1ea
80085db
f8a338d
80085db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c8cc8a
80085db
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralyticsplus import YOLO
import cv2
import numpy as np
from transformers import pipeline
import requests
from io import BytesIO
import os

model = YOLO('Corn-Disease50epoch.pt')
name = ['Leaf Blight','Corn Rust','Gray Leaf Spot', 'Healthy']
image_directory = "/home/user/app/images"
# video_directory = "/home/user/app/video"

# url_example="https://drive.google.com/file/d/1bBq0bNmJ5X83tDWCzdzHSYCdg-aUL4xO/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im1 = Image.open(BytesIO(r.content))

# url_example="https://drive.google.com/file/d/16Z7QzvZ99fbEPj1sls_jOCJBsC0h_dYZ/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im2 = Image.open(BytesIO(r.content))

# url_example="https://drive.google.com/file/d/13mjTMS3eR0AKYSbV-Fpb3fTBno_T42JN/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im3 = Image.open(BytesIO(r.content))

# url_example="https://drive.google.com/file/d/1-XpFsa_nz506Ul6grKElVJDu_Jl3KZIF/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im4 = Image.open(BytesIO(r.content))
 # for i, r in enumerate(results):
      
 #    # Plot results image
 #      im_bgr = r.plot()  
 #      im_rgb = im_bgr[..., ::-1]  # Convert BGR to RGB


def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):

    results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
                           
    text = ""
    name_weap = ""
    solution = ""
    
    box = results[0].boxes

    for r in results:
        im_array = r.plot()
        im = Image.fromarray(im_array[..., ::-1])

    
    
    for r in results:
        conf = np.array(r.boxes.conf.cpu())
        cls = np.array(r.boxes.cls.cpu())
        cls = cls.astype(int)
        xywh = np.array(r.boxes.xywh.cpu())
        xywh = xywh.astype(int)  
      
        for con, cl, xy in zip(conf, cls, xywh):
            cone = con.astype(float)
            conef = round(cone,3)
            conef = conef * 100
            text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
                
            if name[cl] == "Corn Rust":
                solution = (f"{solution} Apply fungicides with active ingredients like propiconazole or tebuconazole when symptoms appear.\n") 
            elif name[cl] == "Gray Leaf Spot":
                solution = (f"{solution} Use fungicides containing strobilurins (e.g., azoxystrobin) or triazoles.\n") 
            elif name[cl] == "Leaf Blight":
                solution = (f"{solution} Treat with fungicides such as mancozeb or chlorothalonil during the early stages.\n") 
    
    # xywh = int(results.boxes.xywh)
    # x = xywh[0]
    # y = xywh[1]
           
    return im, text, solution


inputs = [
    gr.Image(type="pil",  label="Input Image"),
    gr.Slider(minimum=320, maximum=1280, value=640,
                     step=32, label="Image Size"),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.3,
                     step=0.05, label="Confidence Threshold"),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.6,
                     step=0.05, label="IOU Threshold"),
]

outputs = [gr.Image( type="pil", label="Output Image"),
           gr.Textbox(label="Result"), gr.Textbox(label="Solution")
          ]

examples = [
    ["/home/user/app/images/jagung7.jpg", 640, 0.3, 0.6],
    ["/home/user/app/images/jagung4.jpeg", 640, 0.3, 0.6],
    ["/home/user/app/images/jagung6.jpeg", 640, 0.3, 0.6]
]

title = """Corn Diseases Detection Finetuned YOLOv8
<br></br>
    <a href="https://colab.research.google.com/drive/1vnxtgPKOgfC8nyCL9hjrNFed75StsqGQ?usp=sharing">
        <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
    </a> """
description = 'Image Size: Defines the image size for inference.\nConfidence Treshold: Sets the minimum confidence threshold for detections.\nIOU Treshold: Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Useful for reducing duplicates.'


def pil_to_cv2(pil_image):
    open_cv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
    return open_cv_image


def process_video(video_path):
    cap = cv2.VideoCapture(video_path)
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        pil_img = Image.fromarray(frame[..., ::-1])  
        result = model.predict(source=pil_img)
        for r in result:
            im_array = r.plot()
            processed_frame = Image.fromarray(im_array[..., ::-1])  
        yield processed_frame
    cap.release()


video_iface = gr.Interface(
    fn=process_video,
    inputs=[
        gr.Video(label="Upload Video", interactive=True)
    ],
    outputs=gr.Image(type="pil",label="Result"),
    title=title,
    description="Upload video for inference.",
    # examples=[[os.path.join(video_directory, "ExampleRifle.mp4")],
    #     [os.path.join(video_directory, "Knife.mp4")],
    # ]
)


image_iface = gr.Interface(fn=response2, inputs=inputs, outputs=outputs, examples=examples, title=title, description=description, theme="dark")

demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])

if __name__ == '__main__':
    demo.launch()