File size: 2,203 Bytes
aeeb601 afc670e b6d54f1 b0e1d53 939d079 b6d54f1 939d079 be96225 939d079 c134122 939d079 c134122 81b89b8 53a60d6 e232795 939d079 b6d54f1 3f46ab4 78dbbdb 09410a4 3fdaf1b 09410a4 81b89b8 78dbbdb 7ba0645 b6d54f1 c1c1237 b6d54f1 6e42dcd b6d54f1 6e42dcd b6d54f1 7ba0645 d550fff 7ba0645 b6d54f1 9ce1868 b6d54f1 e857e4e c134122 b6d54f1 e857e4e c134122 939d079 6cce185 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralyticsplus import YOLO, render_result
import cv2
import numpy as np
# def response(image):
# print(image)
# results = model(image)
# for i, r in enumerate(results):
# # Plot results image
# im_bgr = r.plot()
# im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
# # im_rgb = Image.fromarray(im_rgb)
# return im_rgb
label = {0:'grenade', 1: 'knife', 2: 'pistol', 3: 'rifle'}
def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):
model = YOLO('best (1).pt')
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
box = results[0].boxes
render = render_result(model=model, image=image, result=results[0], rect_th = 1, text_th = 1)
text = ""
for r in results:
conf = r.boxes.conf
cls = r.boxes.cls
text += (f"Detected {label[int(cls)]]} with confidence {double(conf)}\n")
return render,text
inputs = [
gr.Image(type="filepath", label="Input Image"),
gr.Slider(minimum=320, maximum=1280, value=640,
step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.3,
step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.6,
step=0.05, label="IOU Threshold"),
]
outputs = [gr.Image( type="filepath", label="Output Image"),
gr.Textbox()
]
title = "YOLOv8 Custom Object Detection by Uyen Nguyen"
# examples = [['one.jpg', 900, 0.5, 0.8],
# ['two.jpg', 1152, 0.05, 0.05],
# ['three.jpg', 1024, 0.25, 0.25],
# ['four.jpg', 832, 0.3, 0.3]]
# yolo_app = gr.Interface(
# fn=yoloV8_func,
# inputs=inputs,
# outputs=outputs,
# title=title,
# # examples=examples,
# # cache_examples=True,
# )
# Launch the Gradio interface in debug mode with queue enabled
# yolo_app.launch()
iface = gr.Interface(fn=response2, inputs=inputs, outputs=outputs)
iface.launch()
|