File size: 2,566 Bytes
aeeb601 afc670e b6d54f1 b0e1d53 4862689 fd0e675 4862689 8f46261 6d29c3c 66d9a45 962d61a 1425272 4862689 be96225 c134122 cf85c5d c134122 b563bb0 81b89b8 53a60d6 e232795 939d079 b6d54f1 3f46ab4 78dbbdb bb013d8 4862689 07456a8 b7b81f5 09410a4 4862689 78dbbdb 7ba0645 b6d54f1 c1c1237 b6d54f1 6e42dcd b6d54f1 6e42dcd b6d54f1 7ba0645 6d29c3c 7ba0645 b6d54f1 9ce1868 b6d54f1 e857e4e c134122 b6d54f1 e857e4e c134122 939d079 24d7427 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralyticsplus import YOLO, render_result
import cv2
import numpy as np
model = YOLO('best (1).pt')
# for i, r in enumerate(results):
# # Plot results image
# im_bgr = r.plot()
# im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
def response(image):
print(image)
results = model(image)
text=""
for r in results:
conf = np.array(r.boxes.conf)
cls = np.array(r.boxes.cls)
cls = cls.astype(int)
xywh = np.array(r.boxes.xywh)
xywh = xywh.astype(int)
for con, cl, xy in zip(conf, cls, xywh):
cone = con.astype(float)
conef = round(cone,3)
conef = conef * 100
text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
# im_rgb = Image.fromarray(im_rgb)
return text
name = ['grenade','knife','pistol','rifle']
def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
box = results[0].boxes
render = render_result(model=model, image=image, result=results[0], rect_th = 1, text_th = 1)
text = response(image)
# xywh = int(results.boxes.xywh)
# x = xywh[0]
# y = xywh[1]
return render,text
inputs = [
gr.Image(type="filepath", label="Input Image"),
gr.Slider(minimum=320, maximum=1280, value=640,
step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.3,
step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.6,
step=0.05, label="IOU Threshold"),
]
outputs = [gr.Image( type="filepath", label="Output Image"),
gr.Textbox(label="Result")
]
title = "YOLOv8 Custom Object Detection by Uyen Nguyen"
# examples = [['one.jpg', 900, 0.5, 0.8],
# ['two.jpg', 1152, 0.05, 0.05],
# ['three.jpg', 1024, 0.25, 0.25],
# ['four.jpg', 832, 0.3, 0.3]]
# yolo_app = gr.Interface(
# fn=yoloV8_func,
# inputs=inputs,
# outputs=outputs,
# title=title,
# # examples=examples,
# # cache_examples=True,
# )
# Launch the Gradio interface in debug mode with queue enabled
# yolo_app.launch()
iface = gr.Interface(fn=response2, inputs=inputs, outputs=outputs)
iface.launch(debug=True)
|