DrishtiSharma's picture
Update interim.py
a5c39c6 verified
import os
import json
import operator
import streamlit as st
import tempfile
from typing import TypedDict, Annotated, Sequence
from langchain_openai import ChatOpenAI
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.utils.function_calling import convert_to_openai_tool
from langgraph.graph import StateGraph, END
# Environment Setup
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
# Model Initialization
model = ChatOpenAI(temperature=0)
# Define the tool
@tool
def multiply(first_number: int, second_number: int):
"""Multiplies two numbers together and returns the result."""
return first_number * second_number
# Bind tool to model
model_with_tools = model.bind(tools=[convert_to_openai_tool(multiply)])
# State Setup
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
graph = StateGraph(AgentState)
# Model Invocation
def invoke_model(state):
"""
Invoke the model and handle tool invocation logic.
"""
# Extract the question as a string
question = state['messages'][-1].content if isinstance(state['messages'][-1], HumanMessage) else state['messages'][-1]
response = model_with_tools.invoke(question)
# If the response is plain text (no tool calls)
if isinstance(response, str):
return {"messages": [AIMessage(content=response)]}
# If no tool calls exist
if not response.additional_kwargs.get("tool_calls", []):
return {"messages": [AIMessage(content=response.content)]}
# If tool calls are present, return the full response
return {"messages": [response]}
graph.add_node("agent", invoke_model)
# Tool Invocation
def invoke_tool(state):
"""
Invoke the 'multiply' tool if it's called by the model.
"""
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
for tool_call in tool_calls:
if tool_call.get("function", {}).get("name") == "multiply":
arguments = json.loads(tool_call.get("function").get("arguments"))
result = multiply.invoke(arguments)
return {"messages": [AIMessage(content=f"Tool Result: {result}")]}
return {"messages": [AIMessage(content="No valid tool input provided.")]}
graph.add_node("tool", invoke_tool)
graph.add_edge("tool", END)
graph.set_entry_point("agent")
# Router Logic
def router(state):
"""
Decide whether to invoke a tool or return the response.
"""
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
return "tool" if tool_calls else END
graph.add_conditional_edges("agent", router, {"tool": "tool", END: END})
app_graph = graph.compile()
# Save graph visualization as an image
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
graph_viz = app_graph.get_graph(xray=True)
tmpfile.write(graph_viz.draw_mermaid_png())
graph_image_path = tmpfile.name
# Streamlit Interface
st.title("Simple Tool Calling Demo")
# Display the workflow graph
st.image(graph_image_path, caption="Workflow Visualization")
tab1, tab2 = st.tabs(["Try Multiplication", "Ask General Queries"])
# Multiplication Tool Tab
with tab1:
st.subheader("Try Multiplication")
col1, col2 = st.columns(2)
with col1:
first_number = st.number_input("First Number", value=0, step=1)
with col2:
second_number = st.number_input("Second Number", value=0, step=1)
if st.button("Multiply"):
question = f"What is {first_number} * {second_number}?"
try:
output = app_graph.invoke({"messages": [HumanMessage(content=question)]})
st.success(output['messages'][-1].content)
except Exception as e:
st.error(f"Error: {e}")
# General Query Tab
with tab2:
st.subheader("General Query")
user_input = st.text_input("Enter your question here")
if st.button("Submit"):
if user_input:
try:
# Pass the user input as a HumanMessage
result = app_graph.invoke({"messages": [HumanMessage(content=user_input)]})
st.write("Response:")
st.success(result['messages'][-1].content)
except Exception as e:
st.error(f"Error: {e}")
else:
st.warning("Please enter a valid input.")
# Sidebar for References
st.sidebar.title("References")
st.sidebar.markdown("1. [LangGraph Tool Calling](https://github.com/aritrasen87/LLM_RAG_Model_Deployment/blob/main/LangGraph_02_ToolCalling.ipynb)")