DrishtiSharma's picture
Create test.py
963e565 verified
import os
import json
import operator
import streamlit as st
import tempfile
from typing import TypedDict, Annotated, Sequence
from langchain_openai import ChatOpenAI
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.utils.function_calling import convert_to_openai_tool
from langgraph.graph import StateGraph, END
# Environment Setup
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
# Model Initialization
model = ChatOpenAI(temperature=0)
# Define the tool
@tool
def multiply(first_number: int, second_number: int):
"""Multiplies two numbers together and returns the result."""
return first_number * second_number
# Bind tool to model
model_with_tools = model.bind(tools=[convert_to_openai_tool(multiply)])
# State Setup
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
graph = StateGraph(AgentState)
# Model Invocation
def invoke_model(state):
question = state['messages'][-1].content
response = model_with_tools.invoke(question)
return {"messages": [response]}
graph.add_node("agent", invoke_model)
# Tool Invocation
def invoke_tool(state):
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
tool_results = []
for tool_call in tool_calls:
if tool_call["function"]["name"] == "multiply":
arguments = json.loads(tool_call["function"]["arguments"])
result = multiply.invoke(arguments)
tool_results.append(
AIMessage(content=f"Tool Result: {result}", additional_kwargs={"tool_call_id": tool_call["id"]})
)
return {"messages": tool_results or [AIMessage(content="No valid tool input provided.")]}
graph.add_node("tool", invoke_tool)
# Explicit Router Node
def router(state):
"""
Route to tool if tool calls exist; otherwise END the workflow.
"""
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
if tool_calls:
return {"messages": [AIMessage(content="Routing to tool...")]}
else:
return {"messages": [AIMessage(content=state['messages'][-1].content)]}
graph.add_node("router", router)
# Add explicit edges
graph.add_edge("agent", "router")
graph.add_conditional_edges("router", lambda state: "tool" if state['messages'][-1].additional_kwargs.get("tool_calls") else END, {"tool": "tool", END: END})
graph.add_edge("tool", END)
# Compile the graph
graph.set_entry_point("agent")
app_graph = graph.compile()
# Save graph visualization with xray for visibility
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
graph_viz = app_graph.get_graph(xray=True)
tmpfile.write(graph_viz.draw_mermaid_png())
graph_image_path = tmpfile.name
# Streamlit Interface
st.title("Simple Tool Calling Demo")
st.image(graph_image_path, caption="Workflow Visualization")
tab1, tab2 = st.tabs(["Try Multiplication", "Ask General Queries"])
with tab1:
st.subheader("Try Multiplication")
first_number = st.number_input("First Number", value=0, step=1)
second_number = st.number_input("Second Number", value=0, step=1)
if st.button("Multiply"):
question = f"What is {first_number} * {second_number}?"
try:
output = app_graph.invoke({"messages": [HumanMessage(content=question)]})
st.success(output['messages'][-1].content)
except Exception as e:
st.error(f"Error: {e}")
with tab2:
st.subheader("General Query")
user_input = st.text_input("Enter your question here")
if st.button("Submit"):
try:
result = app_graph.invoke({"messages": [HumanMessage(content=user_input)]})
st.success(result['messages'][-1].content)
except Exception as e:
st.error(f"Error: {e}")