Spaces:
Sleeping
Sleeping
def ask_gpt4o_for_visualization(query, df, llm): | |
columns = ', '.join(df.columns) | |
prompt = f""" | |
Analyze the query and suggest one or more relevant visualizations. | |
Query: "{query}" | |
Available Columns: {columns} | |
Respond in this JSON format (as a list if multiple suggestions): | |
[ | |
{{ | |
"chart_type": "bar/box/line/scatter", | |
"x_axis": "column_name", | |
"y_axis": "column_name", | |
"group_by": "optional_column_name" | |
}} | |
] | |
""" | |
response = llm.generate(prompt) | |
try: | |
return json.loads(response) | |
except json.JSONDecodeError: | |
st.error("β οΈ GPT-4o failed to generate a valid suggestion.") | |
return None | |
def add_stats_to_figure(fig, df, y_axis, chart_type): | |
""" | |
Add relevant statistical annotations to the visualization | |
based on the chart type. | |
""" | |
# Check if the y-axis column is numeric | |
if not pd.api.types.is_numeric_dtype(df[y_axis]): | |
st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}") | |
return fig | |
# Compute statistics for numeric data | |
min_val = df[y_axis].min() | |
max_val = df[y_axis].max() | |
avg_val = df[y_axis].mean() | |
median_val = df[y_axis].median() | |
std_dev_val = df[y_axis].std() | |
# Format the stats for display | |
stats_text = ( | |
f"π **Statistics**\n\n" | |
f"- **Min:** ${min_val:,.2f}\n" | |
f"- **Max:** ${max_val:,.2f}\n" | |
f"- **Average:** ${avg_val:,.2f}\n" | |
f"- **Median:** ${median_val:,.2f}\n" | |
f"- **Std Dev:** ${std_dev_val:,.2f}" | |
) | |
# Apply stats only to relevant chart types | |
if chart_type in ["bar", "line"]: | |
# Add annotation box for bar and line charts | |
fig.add_annotation( | |
text=stats_text, | |
xref="paper", yref="paper", | |
x=1.02, y=1, | |
showarrow=False, | |
align="left", | |
font=dict(size=12, color="black"), | |
bordercolor="gray", | |
borderwidth=1, | |
bgcolor="rgba(255, 255, 255, 0.85)" | |
) | |
# Add horizontal reference lines | |
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right") | |
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right") | |
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right") | |
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right") | |
elif chart_type == "scatter": | |
# Add stats annotation only, no lines for scatter plots | |
fig.add_annotation( | |
text=stats_text, | |
xref="paper", yref="paper", | |
x=1.02, y=1, | |
showarrow=False, | |
align="left", | |
font=dict(size=12, color="black"), | |
bordercolor="gray", | |
borderwidth=1, | |
bgcolor="rgba(255, 255, 255, 0.85)" | |
) | |
elif chart_type == "box": | |
# Box plots inherently show distribution; no extra stats needed | |
pass | |
elif chart_type == "pie": | |
# Pie charts represent proportions, not suitable for stats | |
st.info("π Pie charts represent proportions. Additional stats are not applicable.") | |
elif chart_type == "heatmap": | |
# Heatmaps already reflect data intensity | |
st.info("π Heatmaps inherently reflect distribution. No additional stats added.") | |
else: | |
st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.") | |
return fig | |
# Dynamically generate Plotly visualizations based on GPT-4o suggestions | |
def generate_visualization(suggestion, df): | |
""" | |
Generate a Plotly visualization based on GPT-4o's suggestion. | |
If the Y-axis is missing, infer it intelligently. | |
""" | |
chart_type = suggestion.get("chart_type", "bar").lower() | |
x_axis = suggestion.get("x_axis") | |
y_axis = suggestion.get("y_axis") | |
group_by = suggestion.get("group_by") | |
# Step 1: Infer Y-axis if not provided | |
if not y_axis: | |
numeric_columns = df.select_dtypes(include='number').columns.tolist() | |
# Avoid using the same column for both axes | |
if x_axis in numeric_columns: | |
numeric_columns.remove(x_axis) | |
# Smart guess: prioritize salary or relevant metrics if available | |
priority_columns = ["salary_in_usd", "income", "earnings", "revenue"] | |
for col in priority_columns: | |
if col in numeric_columns: | |
y_axis = col | |
break | |
# Fallback to the first numeric column if no priority columns exist | |
if not y_axis and numeric_columns: | |
y_axis = numeric_columns[0] | |
# Step 2: Validate axes | |
if not x_axis or not y_axis: | |
st.warning("β οΈ Unable to determine appropriate columns for visualization.") | |
return None | |
# Step 3: Dynamically select the Plotly function | |
plotly_function = getattr(px, chart_type, None) | |
if not plotly_function: | |
st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.") | |
return None | |
# Step 4: Prepare dynamic plot arguments | |
plot_args = {"data_frame": df, "x": x_axis, "y": y_axis} | |
if group_by and group_by in df.columns: | |
plot_args["color"] = group_by | |
try: | |
# Step 5: Generate the visualization | |
fig = plotly_function(**plot_args) | |
fig.update_layout( | |
title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}", | |
xaxis_title=x_axis.replace('_', ' ').title(), | |
yaxis_title=y_axis.replace('_', ' ').title(), | |
) | |
# Step 6: Apply statistics intelligently | |
fig = add_statistics_to_visualization(fig, df, y_axis, chart_type) | |
return fig | |
except Exception as e: | |
st.error(f"β οΈ Failed to generate visualization: {e}") | |
return None | |
def generate_multiple_visualizations(suggestions, df): | |
""" | |
Generates one or more visualizations based on GPT-4o's suggestions. | |
Handles both single and multiple suggestions. | |
""" | |
visualizations = [] | |
for suggestion in suggestions: | |
fig = generate_visualization(suggestion, df) | |
if fig: | |
# Apply chart-specific statistics | |
fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"]) | |
visualizations.append(fig) | |
if not visualizations and suggestions: | |
st.warning("β οΈ No valid visualization found. Displaying the most relevant one.") | |
best_suggestion = suggestions[0] | |
fig = generate_visualization(best_suggestion, df) | |
fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"]) | |
visualizations.append(fig) | |
return visualizations | |
def handle_visualization_suggestions(suggestions, df): | |
""" | |
Determines whether to generate a single or multiple visualizations. | |
""" | |
visualizations = [] | |
# If multiple suggestions, generate multiple plots | |
if isinstance(suggestions, list) and len(suggestions) > 1: | |
visualizations = generate_multiple_visualizations(suggestions, df) | |
# If only one suggestion, generate a single plot | |
elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1): | |
suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions | |
fig = generate_visualization(suggestion, df) | |
if fig: | |
visualizations.append(fig) | |
# Handle cases when no visualization could be generated | |
if not visualizations: | |
st.warning("β οΈ Unable to generate any visualization based on the suggestion.") | |
# Display all generated visualizations | |
for fig in visualizations: | |
st.plotly_chart(fig, use_container_width=True) | |
----------------- | |
def ask_gpt4o_for_visualization(query, df, llm, retries=2): | |
import json | |
# Identify numeric and categorical columns | |
numeric_columns = df.select_dtypes(include='number').columns.tolist() | |
categorical_columns = df.select_dtypes(exclude='number').columns.tolist() | |
# Enhanced Prompt with More Examples | |
prompt = f""" | |
Analyze the following query and suggest the most suitable visualization(s) using the dataset. | |
**Query:** "{query}" | |
**Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'} | |
**Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'} | |
Suggest visualizations in this exact JSON format: | |
[ | |
{{ | |
"chart_type": "bar/box/line/scatter/pie/heatmap", | |
"x_axis": "categorical_or_time_column", | |
"y_axis": "numeric_column", | |
"group_by": "optional_column_for_grouping", | |
"title": "Title of the chart", | |
"description": "Why this chart is suitable" | |
}} | |
] | |
**Examples:** | |
- For salary distribution: | |
{{ | |
"chart_type": "box", | |
"x_axis": "job_title", | |
"y_axis": "salary_in_usd", | |
"group_by": "experience_level", | |
"title": "Salary Distribution by Job Title and Experience", | |
"description": "A box plot showing salary ranges across job titles and experience levels." | |
}} | |
- For company size comparison: | |
{{ | |
"chart_type": "bar", | |
"x_axis": "company_size", | |
"y_axis": "salary_in_usd", | |
"group_by": null, | |
"title": "Average Salary by Company Size", | |
"description": "A bar chart comparing the average salaries across different company sizes." | |
}} | |
- For revenue trends over time: | |
{{ | |
"chart_type": "line", | |
"x_axis": "year", | |
"y_axis": "revenue", | |
"group_by": null, | |
"title": "Revenue Growth Over Years", | |
"description": "A line chart showing the trend of revenue over the years." | |
}} | |
- For market share breakdown: | |
{{ | |
"chart_type": "pie", | |
"x_axis": "market_segment", | |
"y_axis": null, | |
"group_by": null, | |
"title": "Market Share by Segment", | |
"description": "A pie chart showing the distribution of market share across various segments." | |
}} | |
- For correlation analysis: | |
{{ | |
"chart_type": "scatter", | |
"x_axis": "years_of_experience", | |
"y_axis": "salary_in_usd", | |
"group_by": "job_title", | |
"title": "Experience vs Salary by Job Title", | |
"description": "A scatter plot showing the relationship between years of experience and salary across job titles." | |
}} | |
- For data density: | |
{{ | |
"chart_type": "heatmap", | |
"x_axis": "department", | |
"y_axis": "region", | |
"group_by": null, | |
"title": "Employee Distribution by Department and Region", | |
"description": "A heatmap showing the concentration of employees across departments and regions." | |
}} | |
Only suggest visualizations that make sense for the data and the query. | |
""" | |
for attempt in range(retries + 1): | |
try: | |
# Generate response from the model | |
response = llm.generate(prompt) | |
# Load JSON response | |
suggestions = json.loads(response) | |
# Validate response structure | |
if isinstance(suggestions, list): | |
valid_suggestions = [ | |
s for s in suggestions if all(k in s for k in ["chart_type", "x_axis", "y_axis"]) | |
] | |
if valid_suggestions: | |
return valid_suggestions | |
else: | |
st.warning("β οΈ GPT-4o did not suggest valid visualizations.") | |
return None | |
elif isinstance(suggestions, dict): | |
if all(k in suggestions for k in ["chart_type", "x_axis", "y_axis"]): | |
return [suggestions] | |
else: | |
st.warning("β οΈ GPT-4o's suggestion is incomplete.") | |
return None | |
except json.JSONDecodeError: | |
st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.") | |
except Exception as e: | |
st.error(f"β οΈ Error during GPT-4o call: {e}") | |
# Retry if necessary | |
if attempt < retries: | |
st.info("π Retrying visualization suggestion...") | |
st.error("β Failed to generate a valid visualization after multiple attempts.") | |
return None | |