QZFantasies's picture
add wheels
c614b0f
import os
import imageio
import numpy as np
import torch
from tqdm import tqdm
from pytorch3d.renderer import (
PerspectiveCameras,
TexturesVertex,
PointLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
)
from pytorch3d.renderer.mesh.shader import ShaderBase
from pytorch3d.structures import Meshes
class NormalShader(ShaderBase):
def __init__(self, device = "cpu", **kwargs):
super().__init__(device=device, **kwargs)
def forward(self, fragments, meshes, **kwargs):
blend_params = kwargs.get("blend_params", self.blend_params)
texels = fragments.bary_coords.clone()
texels = texels.permute(0, 3, 1, 2, 4)
texels = texels * 2 - 1 # 将 bary_coords 映射到 [-1, 1]
# 获取法线
verts_normals = meshes.verts_normals_packed()
faces_normals = verts_normals[meshes.faces_packed()]
bary_coords = fragments.bary_coords
pixel_normals = (bary_coords[..., None] * faces_normals[fragments.pix_to_face]).sum(dim=-2)
pixel_normals = pixel_normals / pixel_normals.norm(dim=-1, keepdim=True)
# 将法线映射到颜色空间
# colors = (pixel_normals + 1) / 2 # 将法线映射到 [0, 1]
colors = torch.clamp(pixel_normals, -1, 1)
print(colors.shape)
mask = (fragments.pix_to_face > 0).float()
colors = torch.cat([colors, mask.unsqueeze(-1)], dim=-1)
# colors[fragments.pix_to_face < 0] = 0
# 混合颜色
# images = self.blend(texels, colors, fragments, blend_params)
return colors
def overlay_image_onto_background(image, mask, bbox, background):
if isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
if isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy()
out_image = background.copy()
bbox = bbox[0].int().cpu().numpy().copy()
roi_image = out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]]
if len(roi_image) < 1 or len(roi_image[1]) < 1:
return out_image
try:
roi_image[mask] = image[mask]
except Exception as e:
raise e
out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]] = roi_image
return out_image
def update_intrinsics_from_bbox(K_org, bbox):
'''
update intrinsics for cropped images
'''
device, dtype = K_org.device, K_org.dtype
K = torch.zeros((K_org.shape[0], 4, 4)
).to(device=device, dtype=dtype)
K[:, :3, :3] = K_org.clone()
K[:, 2, 2] = 0
K[:, 2, -1] = 1
K[:, -1, 2] = 1
image_sizes = []
for idx, bbox in enumerate(bbox):
left, upper, right, lower = bbox
cx, cy = K[idx, 0, 2], K[idx, 1, 2]
new_cx = cx - left
new_cy = cy - upper
new_height = max(lower - upper, 1)
new_width = max(right - left, 1)
new_cx = new_width - new_cx
new_cy = new_height - new_cy
K[idx, 0, 2] = new_cx
K[idx, 1, 2] = new_cy
image_sizes.append((int(new_height), int(new_width)))
return K, image_sizes
def perspective_projection(x3d, K, R=None, T=None):
if R != None:
x3d = torch.matmul(R, x3d.transpose(1, 2)).transpose(1, 2)
if T != None:
x3d = x3d + T.transpose(1, 2)
x2d = torch.div(x3d, x3d[..., 2:])
x2d = torch.matmul(K, x2d.transpose(-1, -2)).transpose(-1, -2)[..., :2]
return x2d
def compute_bbox_from_points(X, img_w, img_h, scaleFactor=1.2):
left = torch.clamp(X.min(1)[0][:, 0], min=0, max=img_w)
right = torch.clamp(X.max(1)[0][:, 0], min=0, max=img_w)
top = torch.clamp(X.min(1)[0][:, 1], min=0, max=img_h)
bottom = torch.clamp(X.max(1)[0][:, 1], min=0, max=img_h)
cx = (left + right) / 2
cy = (top + bottom) / 2
width = (right - left)
height = (bottom - top)
new_left = torch.clamp(cx - width/2 * scaleFactor, min=0, max=img_w-1)
new_right = torch.clamp(cx + width/2 * scaleFactor, min=1, max=img_w)
new_top = torch.clamp(cy - height / 2 * scaleFactor, min=0, max=img_h-1)
new_bottom = torch.clamp(cy + height / 2 * scaleFactor, min=1, max=img_h)
bbox = torch.stack((new_left.detach(), new_top.detach(),
new_right.detach(), new_bottom.detach())).int().float().T
return bbox
class Renderer():
def __init__(self, width, height, K, device, faces=None):
self.width = width
self.height = height
self.K = K
self.device = device
if faces is not None:
self.faces = torch.from_numpy(
(faces).astype('int')
).unsqueeze(0).to(self.device)
self.initialize_camera_params()
self.lights = PointLights(device=device, location=[[0.0, 0.0, -10.0]])
self.create_renderer()
def create_camera(self, R=None, T=None):
if R is not None:
self.R = R.clone().view(1, 3, 3).to(self.device)
if T is not None:
self.T = T.clone().view(1, 3).to(self.device)
return PerspectiveCameras(
device=self.device,
R=self.R.mT,
T=self.T,
K=self.K_full,
image_size=self.image_sizes,
in_ndc=False)
def create_renderer(self):
self.renderer = MeshRenderer(
rasterizer=MeshRasterizer(
raster_settings=RasterizationSettings(
image_size=self.image_sizes[0],
blur_radius=1e-5,),
),
shader=SoftPhongShader(
device=self.device,
lights=self.lights,
)
)
def create_normal_renderer(self):
normal_renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=self.cameras,
raster_settings=RasterizationSettings(
image_size=self.image_sizes[0],
),
),
shader=NormalShader(device=self.device),
)
return normal_renderer
def initialize_camera_params(self):
"""Hard coding for camera parameters
TODO: Do some soft coding"""
# Extrinsics
self.R = torch.diag(
torch.tensor([1, 1, 1])
).float().to(self.device).unsqueeze(0)
self.T = torch.tensor(
[0, 0, 0]
).unsqueeze(0).float().to(self.device)
# Intrinsics
self.K = self.K.unsqueeze(0).float().to(self.device)
self.bboxes = torch.tensor([[0, 0, self.width, self.height]]).float()
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, self.bboxes)
self.cameras = self.create_camera()
def render_normal(self, vertices):
vertices = vertices.unsqueeze(0)
mesh = Meshes(verts=vertices, faces=self.faces)
normal_renderer = self.create_normal_renderer()
results = normal_renderer(mesh)
results = torch.flip(results, [1, 2])
return results
def render_mesh(self, vertices, background, colors=[0.8, 0.8, 0.8]):
self.update_bbox(vertices[::50], scale=1.2)
vertices = vertices.unsqueeze(0)
if colors[0] > 1: colors = [c / 255. for c in colors]
verts_features = torch.tensor(colors).reshape(1, 1, 3).to(device=vertices.device, dtype=vertices.dtype)
verts_features = verts_features.repeat(1, vertices.shape[1], 1)
textures = TexturesVertex(verts_features=verts_features)
mesh = Meshes(verts=vertices,
faces=self.faces,
textures=textures,)
materials = Materials(
device=self.device,
specular_color=(colors, ),
shininess=0
)
results = torch.flip(
self.renderer(mesh, materials=materials, cameras=self.cameras, lights=self.lights),
[1, 2]
)
image = results[0, ..., :3] * 255
mask = results[0, ..., -1] > 1e-3
image = overlay_image_onto_background(image, mask, self.bboxes, background.copy())
self.reset_bbox()
return image
def update_bbox(self, x3d, scale=2.0, mask=None):
""" Update bbox of cameras from the given 3d points
x3d: input 3D keypoints (or vertices), (num_frames, num_points, 3)
"""
if x3d.size(-1) != 3:
x2d = x3d.unsqueeze(0)
else:
x2d = perspective_projection(x3d.unsqueeze(0), self.K, self.R, self.T.reshape(1, 3, 1))
if mask is not None:
x2d = x2d[:, ~mask]
bbox = compute_bbox_from_points(x2d, self.width, self.height, scale)
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def reset_bbox(self,):
bbox = torch.zeros((1, 4)).float().to(self.device)
bbox[0, 2] = self.width
bbox[0, 3] = self.height
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
class RendererUtil():
def __init__(self, K, w, h, device, faces, keep_origin=True):
self.keep_origin = keep_origin
self.default_R = torch.eye(3)
self.default_T = torch.zeros(3)
self.device = device
self.renderer = Renderer(w, h, K, device, faces)
def set_extrinsic(self, R, T):
self.default_R = R
self.default_T = T
def render_normal(self, verts_list):
if not len(verts_list) == 1:
return None
self.renderer.create_camera(self.default_R, self.default_T)
normal_map = self.renderer.render_normal(verts_list[0])
return normal_map[0, :, :, 0]
def render_frame(self, humans, pred_rend_array, verts_list=None, color_list=None):
if not isinstance(pred_rend_array, np.ndarray):
pred_rend_array = np.asarray(pred_rend_array)
self.renderer.create_camera(self.default_R, self.default_T)
_img = pred_rend_array
if humans is not None:
for human in humans:
_img = self.renderer.render_mesh(human['v3d'].to(self.device), _img)
else:
for i, verts in enumerate(verts_list):
if color_list is None:
_img = self.renderer.render_mesh(verts.to(self.device), _img)
else:
_img = self.renderer.render_mesh(verts.to(self.device), _img, color_list[i])
if self.keep_origin:
_img = np.concatenate([np.asarray(pred_rend_array), _img],1).astype(np.uint8)
return _img
def render_video(self, results, pil_bis_frames, fps, out_path):
writer = imageio.get_writer(
out_path,
fps=fps, mode='I', format='FFMPEG', macro_block_size=1
)
for i, humans in enumerate(tqdm(results)):
pred_rend_array = pil_bis_frames[i]
_img = self.render_frame( humans, pred_rend_array)
try:
writer.append_data(_img)
except:
print('Error in writing video')
print(type(_img))
writer.close()
def render_frame(renderer, humans, pred_rend_array, default_R, default_T, device, keep_origin=True):
if not isinstance(pred_rend_array, np.ndarray):
pred_rend_array = np.asarray(pred_rend_array)
renderer.create_camera(default_R, default_T)
_img = pred_rend_array
if humans is None:
humans = []
if isinstance(humans, dict):
humans = [humans]
for human in humans:
if isinstance(human, dict):
v3d = human['v3d'].to(device)
else:
v3d = human
_img = renderer.render_mesh(v3d, _img)
if keep_origin:
_img = np.concatenate([np.asarray(pred_rend_array), _img],1).astype(np.uint8)
return _img
def render_video(results, faces, K, pil_bis_frames, fps, out_path, device, keep_origin=True):
# results [F, N, ...]
if isinstance(pil_bis_frames[0], np.ndarray):
height, width, _ = pil_bis_frames[0].shape
else:
shape = pil_bis_frames[0].size
width, height = shape[1], shape[0]
renderer = Renderer(width, height, K[0], device, faces)
# build default camera
default_R, default_T = torch.eye(3), torch.zeros(3)
writer = imageio.get_writer(
out_path,
fps=fps, mode='I', format='FFMPEG', macro_block_size=1
)
for i, humans in enumerate(tqdm(results)):
pred_rend_array = pil_bis_frames[i]
_img = render_frame(renderer, humans, pred_rend_array, default_R, default_T, device, keep_origin)
try:
writer.append_data(_img)
except:
print('Error in writing video')
print(type(_img))
writer.close()