LHM / engine /pose_estimation /pose_utils /render_oldversion.py
QZFantasies's picture
add wheels
c614b0f
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license
import torch
import numpy as np
import trimesh
import math
from scipy.spatial.transform import Rotation
from PIL import ImageFont, ImageDraw, Image
OPENCV_TO_OPENGL_CAMERA_CONVENTION = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
def geotrf( Trf, pts, ncol=None, norm=False):
""" Apply a geometric transformation to a list of 3-D points.
H: 3x3 or 4x4 projection matrix (typically a Homography)
p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)
ncol: int. number of columns of the result (2 or 3)
norm: float. if != 0, the resut is projected on the z=norm plane.
Returns an array of projected 2d points.
"""
assert Trf.ndim in (2,3)
if isinstance(Trf, np.ndarray):
pts = np.asarray(pts)
elif isinstance(Trf, torch.Tensor):
pts = torch.as_tensor(pts, dtype=Trf.dtype)
ncol = ncol or pts.shape[-1]
# adapt shape if necessary
output_reshape = pts.shape[:-1]
if Trf.ndim == 3:
assert len(Trf) == len(pts), 'batch size does not match'
if Trf.ndim == 3 and pts.ndim > 3:
# Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
pts = pts.reshape(pts.shape[0], -1, pts.shape[-1])
elif Trf.ndim == 3 and pts.ndim == 2:
# Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
pts = pts[:, None, :]
if pts.shape[-1]+1 == Trf.shape[-1]:
Trf = Trf.swapaxes(-1,-2) # transpose Trf
pts = pts @ Trf[...,:-1,:] + Trf[...,-1:,:]
elif pts.shape[-1] == Trf.shape[-1]:
Trf = Trf.swapaxes(-1,-2) # transpose Trf
pts = pts @ Trf
else:
pts = Trf @ pts.T
if pts.ndim >= 2: pts = pts.swapaxes(-1,-2)
if norm:
pts = pts / pts[...,-1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
if norm != 1: pts *= norm
return pts[...,:ncol].reshape(*output_reshape, ncol)
def create_scene(img_pil, l_mesh, l_face, color=None, metallicFactor=0., roughnessFactor=0.5, focal=600):
scene = trimesh.Scene(
lights=trimesh.scene.lighting.Light(intensity=3.0)
)
# Human meshes
for i, mesh in enumerate(l_mesh):
if color is None:
_color = (np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255)
else:
if isinstance(color,list):
_color = color[i]
elif isinstance(color,tuple):
_color = color
else:
raise NotImplementedError
mesh = trimesh.Trimesh(mesh, l_face[i])
mesh.visual = trimesh.visual.TextureVisuals(
uv=None,
material=trimesh.visual.material.PBRMaterial(
metallicFactor=metallicFactor,
roughnessFactor=roughnessFactor,
alphaMode='OPAQUE',
baseColorFactor=(_color[0], _color[1], _color[2], 1.0)
),
image=None,
face_materials=None
)
scene.add_geometry(mesh)
# Image
H, W = img_pil.size[0], img_pil.size[1]
screen_width = 0.3
height = focal * screen_width / H
width = screen_width * 0.5**0.5
rot45 = np.eye(4)
rot45[:3,:3] = Rotation.from_euler('z',np.deg2rad(45)).as_matrix()
rot45[2,3] = -height # set the tip of the cone = optical center
aspect_ratio = np.eye(4)
aspect_ratio[0,0] = W/H
transform = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ aspect_ratio @ rot45
cam = trimesh.creation.cone(width, height, sections=4, transform=transform)
# cam.apply_transform(transform)
# import ipdb
# ipdb.set_trace()
# vertices = geotrf(transform, cam.vertices[[4,5,1,3]])
vertices = cam.vertices[[4,5,1,3]]
faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
img = trimesh.Trimesh(vertices=vertices, faces=faces)
uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
# img_pil = Image.fromarray((255. * np.ones((20,20,3))).astype(np.uint8)) # white only!
material = trimesh.visual.texture.SimpleMaterial(image=img_pil,
diffuse=[255,255,255,0],
ambient=[255,255,255,0],
specular=[255,255,255,0],
glossiness=1.0)
img.visual = trimesh.visual.TextureVisuals(uv=uv_coords, image=img_pil) #, material=material)
# _main_color = [255,255,255,0]
# print(img.visual.material.ambient)
# print(img.visual.material.diffuse)
# print(img.visual.material.specular)
# print(img.visual.material.main_color)
# img.visual.material.ambient = _main_color
# img.visual.material.diffuse = _main_color
# img.visual.material.specular = _main_color
# img.visual.material.main_color = _main_color
# img.visual.material.glossiness = _main_color
scene.add_geometry(img)
# this is the camera mesh
rot2 = np.eye(4)
rot2[:3,:3] = Rotation.from_euler('z',np.deg2rad(2)).as_matrix()
# import ipdb
# ipdb.set_trace()
# vertices = cam.vertices
# print(rot2)
vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
# vertices = np.r_[cam.vertices, 0.95*cam.vertices, 1.05*cam.vertices]
faces = []
for face in cam.faces:
if 0 in face: continue
a,b,c = face
a2,b2,c2 = face + len(cam.vertices)
a3,b3,c3 = face + 2*len(cam.vertices)
# add 3 pseudo-edges
faces.append((a,b,b2))
faces.append((a,a2,c))
faces.append((c2,b,c))
faces.append((a,b,b3))
faces.append((a,a3,c))
faces.append((c3,b,c))
# no culling
faces += [(c,b,a) for a,b,c in faces]
cam = trimesh.Trimesh(vertices=vertices, faces=faces)
cam.visual.face_colors[:,:3] = (255, 0, 0)
scene.add_geometry(cam)
# OpenCV to OpenGL
rot = np.eye(4)
cams2world = np.eye(4)
rot[:3,:3] = Rotation.from_euler('y',np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world @ OPENCV_TO_OPENGL_CAMERA_CONVENTION @ rot))
return scene
def length(v):
return math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2])
def cross(v0, v1):
return [
v0[1]*v1[2]-v1[1]*v0[2],
v0[2]*v1[0]-v1[2]*v0[0],
v0[0]*v1[1]-v1[0]*v0[1]]
def dot(v0, v1):
return v0[0]*v1[0]+v0[1]*v1[1]+v0[2]*v1[2]
def normalize(v, eps=1e-13):
l = length(v)
return [v[0]/(l+eps), v[1]/(l+eps), v[2]/(l+eps)]
def lookAt(eye, target, *args, **kwargs):
"""
eye is the point of view, target is the point which is looked at and up is the upwards direction.
Input should be in OpenCV format - we transform arguments to OpenGL
Do compute in OpenGL and then transform back to OpenCV
"""
# Transform from OpenCV to OpenGL format
# eye = [eye[0], -eye[1], -eye[2]]
# target = [target[0], -target[1], -target[2]]
up = [0,-1,0]
eye, at, up = eye, target, up
zaxis = normalize((at[0]-eye[0], at[1]-eye[1], at[2]-eye[2]))
xaxis = normalize(cross(zaxis, up))
yaxis = cross(xaxis, zaxis)
zaxis = [-zaxis[0],-zaxis[1],-zaxis[2]]
viewMatrix = np.asarray([
[xaxis[0], xaxis[1], xaxis[2], -dot(xaxis, eye)],
[yaxis[0], yaxis[1], yaxis[2], -dot(yaxis, eye)],
[zaxis[0], zaxis[1], zaxis[2], -dot(zaxis, eye)],
[0, 0, 0, 1]]
).reshape(4,4)
# OpenGL to OpenCV
viewMatrix = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ viewMatrix
return viewMatrix
def print_distance_on_image(pred_rend_array, humans, _color):
# Add distance to the image.
font = ImageFont.load_default()
rend_pil = Image.fromarray(pred_rend_array)
draw = ImageDraw.Draw(rend_pil)
for i_hum, hum in enumerate(humans):
# distance
transl = hum['transl_pelvis'].cpu().numpy().reshape(3)
dist_cam = np.sqrt(((transl[[0,2]])**2).sum()) # discarding Y axis
# 2d - bbox
bbox = get_bbox(hum['j2d_smplx'].cpu().numpy(), factor=1.35, output_format='x1y1x2y2')
loc = [(bbox[0] + bbox[2]) / 2., bbox[1]]
txt = f"{dist_cam:.2f}m"
length = font.getlength(txt)
loc[0] = loc[0] - length // 2
fill = tuple((np.asarray(_color[i_hum]) * 255).astype(np.int32).tolist())
draw.text((loc[0], loc[1]), txt, fill=fill, font=font)
return np.asarray(rend_pil)
def get_bbox(points, factor=1., output_format='xywh'):
"""
Args:
- y: [k,2]
Return:
- bbox: [4] in a specific format
"""
assert len(points.shape) == 2, f"Wrong shape, expected two-dimensional array. Got shape {points.shape}"
assert points.shape[1] == 2
x1, x2 = points[:,0].min(), points[:,0].max()
y1, y2 = points[:,1].min(), points[:,1].max()
cx, cy = (x2 + x1) / 2., (y2 + y1) / 2.
sx, sy = np.abs(x2 - x1), np.abs(y2 - y1)
sx, sy = int(factor * sx), int(factor * sy)
x1, y1 = int(cx - sx / 2.), int(cy - sy / 2.)
x2, y2 = int(cx + sx / 2.), int(cy + sy / 2.)
if output_format == 'xywh':
return [x1,y1,sx,sy]
elif output_format == 'x1y1x2y2':
return [x1,y1,x2,y2]
else:
raise NotImplementedError