File size: 2,799 Bytes
3c4a7fb
69d4a53
bb2f2e7
3c4a7fb
 
 
4289de9
6ecdc04
5e36062
 
 
 
 
3c4a7fb
 
 
 
 
 
 
 
 
 
 
 
6ecdc04
3c4a7fb
bdeb96a
3c4a7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb2f2e7
 
 
3c4a7fb
bb2f2e7
bdeb96a
2714936
062df6a
3c4a7fb
 
bb2f2e7
 
 
bea368c
 
 
 
 
bb2f2e7
 
3c4a7fb
bea368c
bb2f2e7
 
 
3c4a7fb
bb2f2e7
 
 
3c4a7fb
bb2f2e7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import json
import faiss
import streamlit as st
import pandas as pd
import numpy as np
from tqdm.auto import tqdm
from sentence_transformers import SentenceTransformer
import torch
import llama_cpp
from llama_cpp import Llama
from huggingface_hub import hf_hub_download

llm = Llama(model_path= hf_hub_download(repo_id="TheBloke/Llama-2-7b-Chat-GGUF", filename="llama-2-7b-chat.Q4_K_M.gguf"), n_ctx=2048)

def list_to_numpy(obj):
    if isinstance(obj, list):
        return np.array(obj)
    return obj

def load_documents_from_jsonl(embeddings_model, jsonl_path, createEmbeddings=False):
    tqdm.pandas(desc="Loading Data")
    df = pd.read_json(jsonl_path, lines=True).progress_apply(lambda x: x)
    df.columns = ['Question' if 'Question' in col else 'Answer' if 'Answer' in col else col for col in df.columns]
    return df
       
def generate_embeddings(tokenizer, model, text):
    with torch.no_grad():
        embeddings = model.encode(text, convert_to_tensor=True)
    return embeddings.cpu().numpy()

def save_to_faiss(df):
    dimension = len(df['Embeddings'].iloc[0])
    db = faiss.IndexFlatL2(dimension)
    embeddings = np.array(df['Embeddings'].tolist()).astype('float32')
    db.add(embeddings)
    faiss.write_index(db, "faiss_index")

def search_in_faiss(query_vector, df, k=5):
    db = faiss.read_index("faiss_index")
    query_vector = np.array(query_vector).astype('float32').reshape(1, -1)
    distances, indices = db.search(query_vector, k)

    results = []
    for idx, dist in zip(indices[0], distances[0]):
        answer_text = df.iloc[idx]['Answer']
        dist = np.sqrt(dist)
        results.append({"Answer": answer_text, "Distance": dist})

    return results

def main():
    # Заголовок приложения
    st.title("Demo for LLAMA-2 RAG with CPU only")

    model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')

    df_qa = load_documents_from_jsonl(model, 'ExportForAI2.jsonl', False)     
    save_to_faiss(df_qa)
    
    # Текстовое поле для ввода вопроса
    input_text = st.text_input("Input", "")

    dataList = [
        {"Answer": "", "Distance": 0},
        {"Answer": "", "Distance": 0},
        {"Answer": "", "Distance": 0}
]
    # Кнопка "Answer"
    if st.button("Answer"):
        query_vector = model.encode(input_text.lower())
        dataList = search_in_faiss(query_vector, df_qa, k=3)
        pass

    # Таблица с данными
    st.write("Most relevants answers")
    st.table(dataList)

    # Текстовое поле для вывода текста
    st.write("LLAMA generated answer:")
    text_output = st.text_area("", "")

# Запуск основной части приложения
if __name__ == "__main__":
    main()