Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
from imutils import perspective | |
from scipy.spatial import distance as dist | |
model=tf.keras.models.load_model("dental_xray_seg.h5") | |
st.header("Segmentation of Teeth in Panoramic X-ray Image") | |
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png"] | |
def load_image(image_file): | |
img = Image.open(image_file) | |
img_gray = img.convert('L') | |
img_np = np.array(img_gray) | |
return img_np | |
def convert_one_channel(img): | |
if len(img.shape)>2: | |
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
return img | |
def convert_rgb(img): | |
if len(img.shape)==2: | |
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) | |
return img | |
def midpoint(ptA, ptB): | |
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) | |
def CCA_Analysis(orig_image,predict_image,erode_iteration,open_iteration): | |
kernel1 =( np.ones((5,5), dtype=np.float32)) | |
kernel_sharpening = np.array([[-1,-1,-1], | |
[-1,9,-1], | |
[-1,-1,-1]]) | |
image = predict_image | |
image2 =orig_image | |
image=cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel1,iterations=open_iteration ) | |
image = cv2.filter2D(image, -1, kernel_sharpening) | |
image=cv2.erode(image,kernel1,iterations =erode_iteration) | |
image=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] | |
labels=cv2.connectedComponents(thresh,connectivity=8)[1] | |
a=np.unique(labels) | |
count2=0 | |
for label in a: | |
if label == 0: | |
continue | |
# Create a mask | |
mask = np.zeros(thresh.shape, dtype="uint8") | |
mask[labels == label] = 255 | |
# Find contours and determine contour area | |
cnts,hieararch = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
cnts = cnts[0] | |
c_area = cv2.contourArea(cnts) | |
# threshhold for tooth count | |
if c_area>2000: | |
count2+=1 | |
(x,y),radius = cv2.minEnclosingCircle(cnts) | |
rect = cv2.minAreaRect(cnts) | |
box = cv2.boxPoints(rect) | |
box = np.array(box, dtype="int") | |
box = perspective.order_points(box) | |
color1 = (list(np.random.choice(range(150), size=3))) | |
color =[int(color1[0]), int(color1[1]), int(color1[2])] | |
cv2.drawContours(image2,[box.astype("int")],0,color,2) | |
(tl,tr,br,bl)=box | |
(tltrX,tltrY)=midpoint(tl,tr) | |
(blbrX,blbrY)=midpoint(bl,br) | |
# compute the midpoint between the top-left and top-right points, | |
# followed by the midpoint between the top-righ and bottom-right | |
(tlblX,tlblY)=midpoint(tl,bl) | |
(trbrX,trbrY)=midpoint(tr,br) | |
# draw the midpoints on the image | |
cv2.circle(image2, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) | |
cv2.circle(image2, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) | |
cv2.circle(image2, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) | |
cv2.circle(image2, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) | |
cv2.line(image2, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),color, 2) | |
cv2.line(image2, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),color, 2) | |
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY)) | |
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY)) | |
pixelsPerMetric=1 | |
dimA = dA * pixelsPerMetric | |
dimB = dB *pixelsPerMetric | |
cv2.putText(image2, "{:.1f}pixel".format(dimA),(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2) | |
cv2.putText(image2, "{:.1f}pixel".format(dimB),(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2) | |
cv2.putText(image2, "{:.1f}".format(label),(int(tltrX - 35), int(tltrY - 5)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2) | |
teeth_count=count2 | |
return image2,teeth_count | |
def detect_decays_static_th(images, dental_masks=None, threshhold=0.9): | |
decay_masks = [] | |
for image, dental_mask in zip(images, dental_masks): | |
decay_mask = np.zeros_like(dental_mask) | |
image_masked_with_dental_mask = image * dental_mask | |
decay_mask[image_masked_with_dental_mask > threshhold*255] = 1 | |
decay_masks.append(decay_mask) | |
decay_masks = np.array(decay_masks) | |
return decay_masks | |
st.subheader("Upload Dental Panoramic X-ray Image") | |
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"]) | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
ex=load_image(examples[0]) | |
st.image(ex,width=200) | |
if st.button('Example 1'): | |
image_file=examples[0] | |
with col2: | |
ex1=load_image(examples[1]) | |
st.image(ex1,width=200) | |
if st.button('Example 2'): | |
image_file=examples[1] | |
with col3: | |
ex2=load_image(examples[2]) | |
st.image(ex2,width=200) | |
if st.button('Example 3'): | |
image_file=examples[2] | |
with col4: | |
ex2=load_image(examples[3]) | |
st.image(ex2,width=200) | |
if st.button('Example 4'): | |
image_file=examples[3] | |
if image_file is not None: | |
image_original = Image.open(image_file) | |
image=np.asarray(image_original) | |
image = convert_rgb(image) | |
st.subheader("Original Image") | |
st.image(image,width=1100) | |
st.text("Making A Prediction ....") | |
img=np.asarray(image) | |
img_cv=convert_one_channel(img) | |
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4) | |
img_cv=np.float32(img_cv/255) | |
img_cv=np.reshape(img_cv,(1,512,512,1)) | |
prediction=model.predict(img_cv) | |
predicted=prediction[0] | |
predicted_rgb = np.expand_dims(predicted, axis=-1) | |
plt.imsave("predict.png",predicted_rgb) | |
predict1 = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4) | |
img_dc=convert_one_channel(img) | |
decay_mask = detect_decays_static_th(img_dc, predict1) | |
mask = np.uint8(predict1 * 255) | |
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY) | |
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
img = cv2.drawContours(img, cnts, -1, (0, 0, 255), 2) | |
mask = np.uint8(decay_mask * 255) | |
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY) | |
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
img = cv2.fillPoly(img, cnts, (255, 0, 0)) | |
if img is not None : | |
st.subheader("Predicted teeth shape + caries zones") | |
st.write(img.shape) | |
st.image(img,width=1100) | |
image=np.asarray(image_original) | |
image = convert_rgb(image) | |
if image.shape[1] < 3000: | |
image = cv2.resize(image,(3100,1150),interpolation=cv2.INTER_LANCZOS4) | |
predicted=cv2.imread("predict.png") | |
predicted = cv2.resize(predicted, (image.shape[1],image.shape[0]), interpolation=cv2.INTER_LANCZOS4) | |
cca_result,teeth_count=CCA_Analysis(image,predicted,3,2) | |
if cca_result is not None : | |
st.subheader("Seperate predicted teeth") | |
st.write(cca_result.shape) | |
st.image(cca_result,width=1100) | |
st.text("Teeth Count = " + str(teeth_count)) | |
st.text("DONE ! ....") | |