Spaces:
Sleeping
Sleeping
File size: 7,276 Bytes
04a4a6b 0a3569d 9c68243 04a4a6b 9c68243 04a4a6b 509404a 04a4a6b 32391ba 04a4a6b 32391ba 9c68243 c793716 9c68243 04a4a6b c89721d 04a4a6b 9c68243 04a4a6b 9c68243 04a4a6b f05b1cf 29ac7f3 b7a73bc a9bc5e6 b7a73bc 04a4a6b 9c68243 e375ead e0950a4 c793716 9c68243 c89721d 9c68243 c89721d 9c68243 882d2a6 f05b1cf 8b17009 9c68243 b7a73bc 9c68243 b7a73bc 9c68243 b7a73bc 9c68243 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
from imutils import perspective
from scipy.spatial import distance as dist
model=tf.keras.models.load_model("dental_xray_seg.h5")
st.header("Segmentation of Teeth in Panoramic X-ray Image")
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png"]
def load_image(image_file):
img = Image.open(image_file)
img_gray = img.convert('L')
img_np = np.array(img_gray)
return img_np
def convert_one_channel(img):
if len(img.shape)>2:
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img
def convert_rgb(img):
if len(img.shape)==2:
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
return img
def midpoint(ptA, ptB):
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
def CCA_Analysis(orig_image,predict_image,erode_iteration,open_iteration):
kernel1 =( np.ones((5,5), dtype=np.float32))
kernel_sharpening = np.array([[-1,-1,-1],
[-1,9,-1],
[-1,-1,-1]])
image = predict_image
image2 =orig_image
image=cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel1,iterations=open_iteration )
image = cv2.filter2D(image, -1, kernel_sharpening)
image=cv2.erode(image,kernel1,iterations =erode_iteration)
image=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
labels=cv2.connectedComponents(thresh,connectivity=8)[1]
a=np.unique(labels)
count2=0
for label in a:
if label == 0:
continue
# Create a mask
mask = np.zeros(thresh.shape, dtype="uint8")
mask[labels == label] = 255
# Find contours and determine contour area
cnts,hieararch = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0]
c_area = cv2.contourArea(cnts)
# threshhold for tooth count
if c_area>2000:
count2+=1
(x,y),radius = cv2.minEnclosingCircle(cnts)
rect = cv2.minAreaRect(cnts)
box = cv2.boxPoints(rect)
box = np.array(box, dtype="int")
box = perspective.order_points(box)
color1 = (list(np.random.choice(range(150), size=3)))
color =[int(color1[0]), int(color1[1]), int(color1[2])]
cv2.drawContours(image2,[box.astype("int")],0,color,2)
(tl,tr,br,bl)=box
(tltrX,tltrY)=midpoint(tl,tr)
(blbrX,blbrY)=midpoint(bl,br)
# compute the midpoint between the top-left and top-right points,
# followed by the midpoint between the top-righ and bottom-right
(tlblX,tlblY)=midpoint(tl,bl)
(trbrX,trbrY)=midpoint(tr,br)
# draw the midpoints on the image
cv2.circle(image2, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
cv2.circle(image2, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
cv2.circle(image2, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
cv2.circle(image2, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
cv2.line(image2, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),color, 2)
cv2.line(image2, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),color, 2)
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
pixelsPerMetric=1
dimA = dA * pixelsPerMetric
dimB = dB *pixelsPerMetric
cv2.putText(image2, "{:.1f}pixel".format(dimA),(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
cv2.putText(image2, "{:.1f}pixel".format(dimB),(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
cv2.putText(image2, "{:.1f}".format(label),(int(tltrX - 35), int(tltrY - 5)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
teeth_count=count2
return image2,teeth_count
def detect_decays_static_th(images, dental_masks=None, threshhold=0.9):
decay_masks = []
for image, dental_mask in zip(images, dental_masks):
decay_mask = np.zeros_like(dental_mask)
image_masked_with_dental_mask = image * dental_mask
decay_mask[image_masked_with_dental_mask > threshhold*255] = 1
decay_masks.append(decay_mask)
decay_masks = np.array(decay_masks)
return decay_masks
st.subheader("Upload Dental Panoramic X-ray Image")
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
col1, col2, col3, col4 = st.columns(4)
with col1:
ex=load_image(examples[0])
st.image(ex,width=200)
if st.button('Example 1'):
image_file=examples[0]
with col2:
ex1=load_image(examples[1])
st.image(ex1,width=200)
if st.button('Example 2'):
image_file=examples[1]
with col3:
ex2=load_image(examples[2])
st.image(ex2,width=200)
if st.button('Example 3'):
image_file=examples[2]
with col4:
ex2=load_image(examples[3])
st.image(ex2,width=200)
if st.button('Example 4'):
image_file=examples[3]
if image_file is not None:
image_original = Image.open(image_file)
image=np.asarray(image_original)
image = convert_rgb(image)
st.subheader("Original Image")
st.image(image,width=1100)
st.text("Making A Prediction ....")
img=np.asarray(image)
img_cv=convert_one_channel(img)
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
img_cv=np.float32(img_cv/255)
img_cv=np.reshape(img_cv,(1,512,512,1))
prediction=model.predict(img_cv)
predicted=prediction[0]
predicted_rgb = np.expand_dims(predicted, axis=-1)
plt.imsave("predict.png",predicted_rgb)
predict1 = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
img_dc=convert_one_channel(img)
decay_mask = detect_decays_static_th(img_dc, predict1)
mask = np.uint8(predict1 * 255)
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img = cv2.drawContours(img, cnts, -1, (0, 0, 255), 2)
mask = np.uint8(decay_mask * 255)
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img = cv2.fillPoly(img, cnts, (255, 0, 0))
if img is not None :
st.subheader("Predicted teeth shape + caries zones")
st.write(img.shape)
st.image(img,width=1100)
image=np.asarray(image_original)
image = convert_rgb(image)
if image.shape[1] < 3000:
image = cv2.resize(image,(3100,1150),interpolation=cv2.INTER_LANCZOS4)
predicted=cv2.imread("predict.png")
predicted = cv2.resize(predicted, (image.shape[1],image.shape[0]), interpolation=cv2.INTER_LANCZOS4)
cca_result,teeth_count=CCA_Analysis(image,predicted,3,2)
if cca_result is not None :
st.subheader("Seperate predicted teeth")
st.write(cca_result.shape)
st.image(cca_result,width=1100)
st.text("Teeth Count = " + str(teeth_count))
st.text("DONE ! ....")
|